
Cluster Computing
The original publication is available at www.springerlink.com, DOI 10.1007/s10586-009-0106-y

GMBlock: Optimizing Data Movement in a Block-level
Storage Sharing System over Myrinet

Evangelos Koukis · Anastassios Nanos · Nectarios Koziris

Received: 5 August 2008 / Accepted: 17 September 2009
c⃝Springer Science+Business Media, LLC

Abstract We present gmblock, a block-level storage
sharing system over Myrinet which uses an optimized

I/O path to transfer data directly between the stor-
age medium and the network, bypassing the host CPU
and main memory bus of the storage server. It is de-

vice driver independent and retains the protection and
isolation features of the OS. We evaluate the perfor-
mance of a prototype gmblock server and find that: (a)

the proposed techniques eliminate memory and periph-
eral bus contention, increasing remote I/O bandwidth
significantly, in the order of 20-200% compared to an

RDMA-based approach, (b) the impact of remote I/O
to local computation becomes negligible, (c) the perfor-
mance characteristics of RAID storage combined with

limited NIC resources reduce performance. We intro-
duce synchronized send operations to improve the de-
gree of disk to network I/O overlapping. We deploy the

OCFS2 shared-disk filesystem over gmblock and show
gains for various application benchmarks, provided I/O
scheduling can eliminate the disk bottleneck due to con-

current access.

Keywords block-level storage, shared storage, memory
contention, network block device, Myrinet, user level
networking, SMP clusters, OCFS2

This research is supported by the PENED 2003 Project (EPAN),
co-funded by the European Social Fund (80%) and National Re-

sources (20%).

Evangelos Koukis · Anastassios Nanos · Nectarios Koziris

National Technical University of Athens
School of Electrical and Computer Engineering
Computing Systems Laboratory

Zografou Campus, Zografou 15780, Greece
E-mail: {vkoukis,ananos,nkoziris}@cslab.ece.ntua.gr

1 Introduction

Clusters built out of commodity components are be-

coming prevalent in the supercomputing sector as a
cost-effective solution for building high-performance par-
allel platforms. Symmetric Multiprocessors (SMPs) of

multicore chips (CMPs), are commonly used as build-
ing blocks for scalable clustered systems, when inter-
connected over a high-bandwidth, low-latency commu-

nications infrastructure, such as Myrinet [4], Quadrics
[20] or Infiniband [1]. One of the most important archi-
tectural characteristics of SMPs is contention among

processors for access to shared resources, most notably
shared main memory and peripheral bus bandwidth.

Traditionally, processors are interconnected over a
shared Front Side Bus to a memory controller, called

the Northbridge in Intel-based designs. Thus, they all
share bandwidth on the FSB and all their memory ac-
cesses are serialized on the Northbridge. Memory con-
tention in SMP nodes is aggravated by peripheral de-

vices, such as Network Interface Cards (NICs) and stor-
age controllers transferring data from and to main mem-
ory using DMA. This increases memory pressure and

has significant performance impact.

This paper explores the implications of contention
in SMP nodes used as commodity storage servers. We
study the data movement in a block-level storage shar-

ing system over Myrinet and show how its performance
suffers as the storage subsystem, the network and lo-
cal processors all compete for access to main memory

and peripheral bus bandwidth. To alleviate the prob-
lem, we explore techniques for efficient device-to-device
data movement between the storage medium and the

network.

2

A network block-level storage sharing system en-

ables a number of clients to access storage devices which
are directly connected to a storage server as if they were
their own. Block read and write requests are encapsu-

lated in network messages to the storage server, where
they are passed to the local block device. When the
block operation completes, the server returns the re-

sulting data over the network. Throughout this paper,
we refer to such systems also as “network block device”
systems, or nbd systems; storage exported by a storage

server appears to the client as a block device accessible
over the network.

The availability of an efficient nbd system is often a
prerequisite for the scalable, yet cost-effective deploy-
ment of various services in high-performance clustered

environments. Such services include shared-disk parallel
filesystems, shared-disk parallel databases, and shared
storage pools for live VM migration in virtualized data
centers. More information on the possible usage scenar-

ios can be found in Section 2.2.

The ideal nbd system would be a very thin, very

low-overhead layer that allows remote use of local stor-
age media with performance close to that of local ac-
cess, without imposing significant load on the storage

server. At the same time, it would be scalable with the
number of storage subsystems and network interfaces.
To achieve that, its operation needs to take advantage

of evolving features of cluster interconnects relating to
network interface programmability and the possibility
of offloading parts of protocol processing to dedicated

cores and local memories close to the network.

However, most current nbd implementations are sub-

optimal in that regard; Often, they involve heavy host
CPU-based processing, being based on TCP/IP for the
transfer of block data. More importantly, they treat

memory as a centralized resource and make use of data
paths that cross the memory and peripheral buses mul-
tiple times, even when employing advanced intercon-

nect features such as user level networking and remote
DMA (RDMA). Thus, they impose high host overhead
and their performance is limited due to bus saturation.

The current situation is analyzed in greater detail in
sections 2.2 and 8.

In this work, we present the design and implemen-
tation of gmblock, a block-level storage sharing archi-
tecture over DMA- and processor-enabled cluster in-

terconnects that is built around a short-circuit data
path between the storage subsystem and the network.
Our prototype implementation uses Myrinet, allowing

direct data movement from storage to the network with-
out any host CPU intervention and eliminating any
copies in main memory. This alleviates the effect of

resource contention, increases scalability and achieves

an up to two-fold increase in remote I/O bandwidth.

When building shared storage pools by having nodes
export local media to the network, remote I/O follows
a disjoint path and does not interfere with computation

on the local CPUs. The design of gmblock enhances
existing OS and user level networking abstractions to
construct the proposed data path, rather on relying on

architecture-specific code changes. Thus, it is indepen-
dent of the actual type of block device used, can sup-
port both read and write access safely, and maintains

the process isolation and memory protection semantics
of the OS.

Experimental evaluation of the base gmblock imple-

mentation shows that although it works around memo-
ry and peripheral bus bandwidth limitations effectively,
its performance lags behind the limits imposed by raw

disk and network bandwidth. We find this is due to the
interaction between the performance characteristics of
RAID storage and memory limitations of the Myrinet
NIC. To better adapt gmblock to the inherent paral-

lelism in request processing by RAID storage, we pro-
pose a new class of send operations over Myrinet, which
support synchronization: their semantics allow the net-

work transfer of block data to overlap disk I/O for a
single block request. Sustained point-to-point through-
put improves about 40% for streaming I/O compared

to the base version of gmblock.
Finally, we present client-side optimizations for zero-

copy scatter-gather I/O, and deploy the OCFS2 shared-

disk parallel filesystem over gmblock, to study the per-
formance of various workloads. Overall performance gains
depend on application I/O patterns and the amount of

read-write sharing over shared storage. We find that us-
ing the direct I/O path generally leads to performance
improvement, provided incoming I/O requests can be

scheduled efficiently, so that the disk subsystem does
not become the bottleneck.

The contribution of this paper can be summarized

as follows:

– We introduce gmblock, a block-level storage shar-

ing system over Myrinet that moves data in direct
I/O paths between storage devices and the network
(Section 3). A prototype implementation (Section

4) shows it eliminates memory and peripheral bus
contention, delivering significant improvements to
remote read/write I/O bandwidth (Section 5).

– We demonstrate how bypassing main memory en-
ables local computation to progress with negligible
interference from remote I/O.

– We discover limitations in certain hardware compo-
nents of the system which reduce the efficiency of
peer-to-peer data transfers. We work around these

limitations by employing an alternate data path us-

3

ing intermediate buffers on the PCI bus while still

bypassing main memory.
– We propose synchronized send operations as an en-

hancement to the semantics of Myrinet’s message-

passing layer. They enable the network to adapt to
the parallel, multiple-stream nature of request ser-
vicing by RAID-based storage subsystems, during

peer-to-peer transfers of block data (Section 6).
– We present client-side optimizations to support end-

to-end zero-copy block transfers and deploy a shared-

disk parallel file system over gmblock, to test its
performance with real-life application I/O patterns
(Section 7).

First, however, we lay groundwork in Section 2 by
presenting the essentials of user level networking and its
implementation on Myrinet/GM, then discuss the im-

portance of an efficient block-level sharing system for
providing a scalable storage infrastructure to commod-
ity clustered systems.

2 Background

2.1 User level networking and Myrinet/GM

This section contains a short introduction to the inner

workings of Myrinet and its GM middleware, to gain
insight on the communications substrate for our shared
block storage system and establish the context for the

proposed modifications.

Myrinet is a low-latency, high-bandwidth intercon-
nection infrastructure for clusters and employs user lev-
el networking techniques [2] to remove the OS from the

critical path of communication.

The Myrinet NICs feature a RISC microprocessor,
called the Lanai, which undertakes almost all network

protocol processing, a small amount (2MBs) of SRAM
for use by the Lanai and three different DMA engines;
one for DMA transfers between host memory and Lanai

SRAM, while the other two handle data transfers be-
tween the SRAM and the network fiber link. To pro-
vide user level networking facilities to applications, the

GM message-passing system is used. GM comprises the
firmware executing on the Lanai, an OS kernel module
and a userspace library. These three parts coordinate

to allow direct access to the NIC from userspace, with-
out the need to enter the kernel via system calls (OS
bypass).

In Fig. 1(c) the main functional blocks of a Myrinet

NIC are displayed. Our testbed is based the on the
M3F2-PCIXE-2 version of the NIC which integrates all
of the described functionality in a single Lanai2XP chip

and supports two packet interfaces.

User

Kernel

NIC

Application

GM Library

GM kernel module

GM firmware

(a) Myrinet/GM stack

NIC

Kernel

User

GM Library

pinned-down buffer

GM event Q

PCIDMA
engine

Lanai SRAM

port send Q

packet descriptors

DMA chains

Send
DMA

Recv
DMA

Application

Lanai
page hash entries

a

a

b

c

d
d

e

e

e

(b) Sending a message over GM

PCIDMA chip

PCI
bridge

Fast Local Memory
(2MB SRAM)

RISC
Packet
Iface

Lanai9 @ 133MHz

Address and 64-bit data

DMA
engine

Host
Iface

(c) Main components onboard a Myrinet NIC

Fig. 1 Implementation of user level networking by Myrinet/GM

Applications map parts of Lanai SRAM (called GM
ports), which contain send and receive queues to be
manipulated directly.

GM offers reliable, connectionless point-to-point mes-
sage delivery between different ports, by multiplexing
message data over connections kept between every pair

of hosts in the network. A “Go back N” protocol is
used, trading bandwidth for reduced latency and soft-
ware overhead.

The GM firmware is organized in four state ma-
chines, called SDMA, SEND, RECV and RDMA: SDMA
polls for new sends or receive events in opened ports and

and initiates DMA from host RAM to Lanai SRAM;
SEND programs the Send DMA engine to inject pack-
ets into the network; RECV manages incoming pack-

ets and handles ACK/NACK control messages; and
RDMA performs receive buffer matching, initiates DMA
to host RAM and inserts receive events in the applica-

tion’s event queue when message reception is complete.

Fig. 1(b) shows the basic steps for a GM send oper-
ation. In all similar figures, the solid lines lines denote

Programmable I/O (PIO) either by the CPU or the
Lanai. The dashed lines denote DMA operations.

Sending a message gm send with callback() en-

tails the following: (a) The application computes the
message in a pinned buffer and places a “send event”
structure in the port send queue (b) SDMA performs

virtual-to-physical address translation using cached pagetable
entries in SRAM and initiates PCI DMA (c) Message
data are brought into Lanai SRAM via DMA (d) SEND

injects packets into the network (e) The remote side

4

ACKs message reception and a send completion event

is posted to the application’s event queue.

It is important to note that sending – conversely,
receiving – a message using GM is a two-phase process:

Host to Lanai DMA: the PCIDMA engine starts,
message data are copied from host RAM to Lanai SRAM

Lanai to wire DMA: the Send DMA engine fetches

message data from SRAM and places them on the wire.

2.2 The need for efficient block-level storage sharing

over the network

The need for shared block-level access to common stor-

age arises often in high-performance clustered environ-
ments. Some of the most common scenarios include
(a) the deployment of shared-disk parallel filesystems,

(b) support of parallel databases based on a shared-disk
architecture, such as Oracle RAC, and (c) virtualized
environments, where disk images of virtual machines

are kept in common storage, so that live migration of
them among VM containers is possible.

In the first case, high performance cluster filesys-

tems typically follow a shared-disk approach: all partic-
ipating nodes are assumed to have equal block-level ac-
cess to a shared storage pool. Distributed lock manage-

ment ensures data consistency. Shared-disk filesystems
include IBM’s General Parallel File System GPFS [24],
Oracle’s OCFS2, Red Hat’s Global File System (GFS)

[25,21], SGI’s Clustered XFS and Veritas’ VxFS.

In the second case, instances of a shared-disk paral-

lel database execute on a number of cluster nodes and
need concurrent access to a shared disk pool, where ta-
ble data, redo logs and other control files are kept.

Finally, in the case of virtualized environments, clus-
ter nodes are used as VM containers. A virtual machine
uses a raw storage volume as its directly connected

virtual hard drive. To enable live VM migration, for
reasons of load balancing and maintainability, storage
must be shared among all VM containers.

Traditionally, the requirement that all nodes have
access to a shared storage pool has been fulfilled by
utilizing a high-end Storage Area Network (SAN), com-

monly based on Fibre-Channel (as in Fig. 2(a)). An
SAN is a networking infrastructure providing high-speed
connections between multiple nodes and a number of

hard disk enclosures. The disks are treated by the nodes
as Direct-attached Storage, i.e. the protocols used are
similar to those employed for accessing locally attached

disks, such as SCSI over FC.

However, this storage architecture requires main-
taining two separate networks, one for shared storage,

and a distinct one for cluster communication, e.g., for

Cluster Interconnect
(Myrinet)

Storage Area Network

(a) All nodes on SAN

Cluster Interconnect
(Myrinet)

Storage Area Network

(b) Storage nodes on SAN

Cluster Interconnect
(Myrinet)

(c) Only local storage

Fig. 2 Interconnection of cluster nodes and storage devices

MPI. This increases the cost per node, since SAN port
count must scale to include all cluster nodes, which all

include appropriate interfaces, e.g., FC HBAs. More-
over, aggregate storage bandwidth remains constant,
determined by the number of physical links to storage

enclosures. Finally, redundant links and storage con-
trollers needed to eliminate single points of failure in-
crease the cost further.

To address these problems, a hybrid approach is
commonly used, whereby only a fraction of cluster nodes

is physically connected to the SAN (“storage” nodes),
exporting the shared disks for block-level access over
the cluster interconnection network, (Fig. 2(b)). Alter-

nately, cost may be reduced further by having com-
pute nodes contribute local resources to form a virtual
shared storage pool (Fig. 2(c)). This model has a num-

ber of distinct advantages. First, aggregate bandwidth
to storage increases with cluster node count enabling
the I/O subsystem to scale with the computational ca-

pacity of the cluster. Second, the total installation cost
is drastically reduced, since a dedicated SAN remains
small, or is eliminated altogether, allowing resources to

be diverted to acquiring more cluster nodes. However,
this also means remote I/O may interfere with local
computation on nodes exporting storage.

The cornerstone of this design is the network disk
sharing layer, usually implemented in a client/server
approach (Fig. 3(a)). It runs as a server on the stor-

age nodes, receiving requests and passing them trans-
parently to a directly-attached storage medium. It also
runs as a client on cluster nodes, exposing a block de-

vice interface to the Operating System and the locally

5

executing instance of the parallel filesystem. There are

various implementations of such systems in use today:
GPFS includes the NSD (Network Shared Disks) lay-
er, which takes care of forwarding block access requests

to storage nodes over TCP/IP. Traditionally, the Linux
kernel has included the NBD (Network Block Device)
driver 1 and Red Hat’s GFS can also be deployed over

an improved version called GNBD.

These implementations are TCP/IP-based. Using
a complex kernel-based protocol stack increases their
portability, but imposes significant protocol overhead,

high CPU load and redundant data copying. Moreover,
it does not take advantage of modern cluster intercon-
nection features enabling OS bypass, zero-copy commu-

nication, such as RDMA. As explained in greater detail
in the chapter on related work, there are research ef-
forts focusing on storage sharing over RDMA. In this

case, the protocol layer is simplified and copying is re-
duced, but data still follow an unoptimized path. For
every remote I/O request, blocks are transferred from

local storage to main memory, then from main memory
to the NIC. These unnecessary data transfers aggravate
contention on shared resources as is the shared bus to

main memory and the peripheral (e.g., PCI) bus, and
interfere with accesses by local CPUs.

3 Design of gmblock

This section presents the design and implementation
of the gmblock block-level storage sharing system over
Myrinet/GM. We begin by showing the overheads in-

volved in standard TCP/IP and RDMA-based approach-
es and how gmblock’s design evolves from these. Then,
we discuss the necessary changes to the GM message-

passing system and the Linux kernel to support a pro-
totype implementation.

3.1 Evolution from previous nbd designs

Let’s return to the generic nbd client/server implemen-
tation as portrayed in Fig. 3(a). The nbd client resides

in the OS kernel and exposes a block device interface to
the rest of the kernel, so that it may appear as an or-
dinary, directly-attached storage device. The requests

being received from the kernel block device layer are
encapsulated in network messages and passed to a re-
mote server. This server is commonly not run in priv-

ileged kernelspace. Instead, it executes as a userspace

1 nbd in all small letters will be used to denote generic
client/server implementations for network sharing of block de-
vices. NBD in all capital letters denotes the TCP/IP implemen-

tation in the Linux kernel.

Hardware

VFS

Linux blockdev layer

nbd client

Kernel

User

Application

POSIX syscalls

Hardware

VFS

Linux blockdev layer

block device driver

Kernel

Storage device

User

nbd userspace server

POSIX syscalls

NIC

(a) Generic nbd system

VFS

Concurrent access, distributed locking,
distributed caching, data partitioning

Block device sharing over interconnect
(or real SAN)

Application

POSIX

semantics

(b) Parallel fs on top of nbd

Fig. 3 A parallel filesystem executing over an nbd infrastructure

initialize_interconnect();

fd = open_block_device();

reply = allocate_memory_buffer();

for (;;) {
cmd = recv_cmd_from_interconnect();

lseek(fd, cmd->start, SEEK_SET);

switch (cmd->type) {
case READ_BLOCK:

read(fd, &reply->payload, cmd->len);

case WRITE_BLOCK:

write(fd, &req->payload, cmd->len);

}
insert_packet_headers(&reply, cmd);

send_over_net(reply, reply->len);

}

Fig. 4 Pseudocode for an nbd server

process, using standard I/O calls to exchange data with
the actual block device being shared.

The pseudocode for a generic nbd server can be seen

in Fig. 4. For simplicity, we will refer to a remote block
read operation but the following discussion applies to
write operations as well, if the steps involving disk I/O

and network I/O are reversed. There are four basic
steps involved in servicing a read block request: (a)
The server receives the request over the interconnect,

unpacks it and determines its type – let’s assume it’s a
read request (b) A system call such as lseek() is used
to locate the relevant block(s) on the storage medium

(c) The data are transferred from the disk to a user-
space buffer (d) The data are transmitted to the node
that requested them.

The overhead involved in these operations depends

significantly on the type of interconnect and the seman-
tics of its API. To better understand the path followed
by the data at the server side, we can see the behavior of

a TCP/IP-based server at the logical layer, as presented
in Fig. 5(a). Again, solid lines denote PIO operations,
dashed lines denote DMA operations. (a) As soon as

a new request is received, e.g. in the form of Ether-
net frames, it is usually DMAed to kernel memory, by
the NIC (b) Depending on the quality of the TCP/IP

implementation it may or may not be copied to other

6

buffers, until it is copied from the kernel to a buffer in

userspace. The server process, which presumably blocks
in a read() system call on a TCP/IP socket, is then wo-
ken up to process the request. It processes the request

by issuing an appropriate read() call to a file descrip-
tor acquired by having open()ed a block device. In the
generic case this is a cached read request; the process

enters the kernel, which (c) uses the block device driver
to setup a DMA transfer of block data from the disk(s)
to the page cache kept in kernel memory (d) Then, the

data need to be copied to the userspace buffer and the
read() call returns (e) Finally, the server process is-
sues a write() call, which copies the data back from

the userspace buffer into kernel memory. Then, again
depending on the quality of the TCP/IP implementa-
tion, a number of copies may be needed to split the data

in frames of appropriate size, which are (f) DMAed by
the NIC and transferred to the remote host.

In Fig. 5(b), we can see the actual path followed by
data, at the physical level. The labels correspond one-
to-one with those used in the previous description: (a,

b) Initially, the read request is DMAed by the NIC to
host RAM, then copied to the userspace buffer using
PIO (c) The disk is programmed to DMA the needed

data to host RAM. The data cross the peripheral bus
and the memory bus (d) The data are copied from the
page cache to the userspace buffer by the CPU (e) The

data are copied back from the userspace buffer to the
kernel, to be sent over the network (f) The data cross
the memory bus and the peripheral bus once again, to

be sent over the network via DMA.

This data path involves a lot of redundant data

movement. The number of copies needed to move data
from the disk to the TCP/IP socket can be reduced by
allowing the kernel more insight into the semantics of

the data transfer; one could map the block device on-
to userspace memory, using mmap(), so that a write()

to the socket copies data directly from the page cache

to the network frame buffers, inside the kernel. Howev-
er, depending on the size of the process address space,
not all of the block device may be mappable. Thus,

the overhead of remapping different parts of the block
device must be taken into account.

A different way to eliminate one memory copy is
by bypassing the page cache altogether. This can be
accomplished by use of the POSIX O DIRECT facility,

which ensures that all I/O with a file descriptor by-
passes the page cache and that data are copied direct-
ly into userspace buffers. The Linux kernel supports

O DIRECT transfers of data; the block layer provides a
generic O DIRECT implementation which takes care of
pinning down the relevant userspace buffers, determin-

ing the physical addresses of the pages involved and fi-

nally enqueuing block I/O requests to the block device

driver which refer to these pages directly instead of the
page cache. Thus, if the block device is DMA-capable,
the data can be brought into the buffers directly, elim-

inating one memory copy. Still, they have to be copied
back into the kernel when the TCP/IP write() call is
issued.

The main drawback of this data path is the large
amount of redundant data copying involved. If only one
kernel copy takes place, data cross the peripheral bus

twice and the memory bus four times. When forming
virtual storage pools by having compute nodes export
storage to the network, remote I/O means fewer CPU

cycles and less memory bandwidth are available to the
locally executing workload (path (g)).

The problem is alleviated, if a user level networking

approach is used. When a cluster interconnect such as
Myrinet is available, the nbd server can bypass the OS
kernel for network I/O, using GM instead of TCP/IP. In
this case, some of the redundant copying is eliminated,

since the steps to service a request are (Fig. 6(a)): (a)
A request is received by the Myrinet NIC and copied di-
rectly into a pinned-down request buffer (b) The server

uses O DIRECT-based I/O so that the storage device is
programmed to place block data into userspace buffers
via DMA (c) The response is pushed to the remote

node using gm send(), as in Section 2.1. In this ap-
proach, most of the PIO-based data movement is elim-
inated. The CPU is no longer involved in network pro-

cessing, the complex TCP/IP stack is removed from the
critical path and almost all CPU time is devoted to run-
ning the computational workload. However, even when

using GM for message passing, main memory is still
on the critical path. At the physical layer (Fig. 6(b)),
for a read operation, block data are transferred from

the storage devices to in-RAM buffers, then from them
to the Myrinet NIC. Thus, they traverse the peripheral
bus and the main memory bus twice; pressure on the pe-

ripheral and main memory buses remains, and remote
I/O still interferes with local computation ((d)).

3.2 An alternative data path with memory bypass

To solve the problem of redundant data movement at
the server side of an nbd system, we propose a short-
er data path, which does not involve main memory at

all. To service a remote I/O request, all that is real-
ly needed is to transfer data from secondary storage
to the network or vice-versa. Data flow based on this

alternative data path is presented in Fig. 7(b): (a) A
read request is received by the Myrinet NIC (b) The
nbd server process services the request by arranging for

block data to be transferred directly from the storage

7

nbd userspace server

User

Kernel

Hardware

user (reply) buffer

TCP

IP

VFS

block layer

blockdev driver

page cache

Storage

netdev drv

NIC

a

a

c

d

d

c

e

f

f

b

POSIX I/O

e

c

(a) Data path at the logical level

CPU

Front-Side Bus

chipset

Memory Controller

PCI/PCI-X Bridge

I/O Controller

DIMM0

DIMM1

DIMM2

DIMM3

RAM

PCI/PCI-X

NIC

CPU

a

b

c

a

d e

f

g

f

(b) Data path at the physical level

Fig. 5 TCP/IP based nbd server

nbd userspace server

User

Kernel

Hardware

user (reply) buffer

VFS

block layer

blockdev driver

page cache

StorageNIC

a

b
b

c

ca

POSIX I/O

b

c

(a) Data path at the logical level

CPU

Front-Side Bus

chipset

Memory Controller

PCI/PCI-X Bridge

I/O Controller

DIMM0

DIMM1

DIMM2

DIMM3

RAM

PCI/PCI-X

NIC

CPU

a

b

a

c

d

c

(b) Data path at the physical level

Fig. 6 GM-based nbd server

nbd userspace server

User

Kernel

Hardware

user (reply) buffer

VFS

block layer

blockdev driver

page cache

Storage NIC

a

b
b

c

b

a

POSIX I/O

b

b

SRAM

b

(a) Data path at the logical level

CPU

Front-Side Bus

chipset

Memory Controller

PCI/PCI-X Bridge

I/O Controller

DIMM0

DIMM1

DIMM2

DIMM3

RAM

PCI/PCI-X

CPU

a

a

d

NIC

c

b

(b) Data path at the physical level

Fig. 7 Proposed gmblock server

device to the Myrinet NIC (c) The data is transmitted
to the node that initiated the operation.

Implementing this path would solve most of the

problems described above:

– The critical path is the shortest possible. Data go
directly from disk to NIC or vice-versa

– The full capacity of the peripheral bus can be used,
since data only traverse it once

8

– There is no staging in buffers kept in RAM, thus no

memory bandwidth is consumed by I/O and code
executing on local CPUs does not incur the overhead
of memory contention

Most importantly, this design would acknowledge
the fact the the remote I/O path may be disjoint from
main memory. The inclusion of RAM buffers in all pre-

vious data paths is a necessity arising from the pro-
gramming semantics of the mechanisms used to enable
the transfer – GM and Linux kernel drivers – rather

than from the intrinsic properties of remote I/O opera-
tions; GM programs the DMA engines on the Myrinet
NIC to exchange data between the Lanai SRAM and

RAM buffers, while the kernel programs storage devices
to move data from/to page cache or userspace buffers
kept in main memory. Thus, to support the proposed

data path, we need to extend these mechanisms so that
direct disk-to-NIC transfers are supported. At the same
time, the architecture-dependent details of setting up

such transfers must be hidden behind existing program-
ming abstractions, i.e. GM user level networking prim-
itives and the Linux I/O system call interface. In this

approach, only minimal changes to the the nbd server
source code will be required to support the enhanced
functionality.

Let’s assume a GM-based nbd server servicing a
read request, similar to that of Fig. 4. In the case of
GM, the server would have used gm open() to initial-

ize the interconnect, and gm dma malloc() to allocate
space for the message buffer. Variable reply contains
the virtual address of this buffer, dedicated to holding

the reply of a remote read operation, before it is trans-
ferred over Myrinet/GM. If this memory space was not
allocated in RAM, but could be made to reside in Lanai

SRAM instead, then the read() system call could be
used un-altered, to express the desired semantics; It
would still mean “I need certain blocks to be copied to

memory pointed to by reply”, this time however refer-
ring to a buffer in SRAM, mapped onto the process’s
VM space at location reply.

However, if standard, buffered I/O was used, us-
ing this call would first bring the data into the kernel’s
page cache, then a CPU-based memcpy() would be used

to copy the data from the cached page to the mapped
SRAM buffer. This would still invoke PIO; the whole of
Lanai SRAM is exposed as a large memory-mapped I/O

resource on the PCI physical address space. Thus, ev-
ery reference by the CPU to the virtual address space
pointed to by reply during the memcpy() operation,

would lead to I/O transactions over the peripheral bus.
The situation would be radically different, if POSIX
O DIRECT access to the open file descriptor for the block

device was used instead. In this case, the kernel would

bypass the page cache. Its direct I/O subsystem would

translate the virtual address of the buffer to a physi-
cal address in the Myrinet NIC’s memory-mapped I/O
space and use this address to submit a block I/O re-

quest to the appropriate in-kernel driver. In the case of
a DMA-capable storage device, the ensuing DMA trans-
action would have the DMA engine copying data direct-

ly to the Myrinet NIC, bypassing the CPU and main
memory altogether. To finish servicing the request, the
second half of a GM Send operation is needed: the Host-

to-Lanai DMA phase is omitted and a Lanai-to-wire
DMA operation is performed to send the data off the
SRAM buffer.

Conversely, in the case of a remote write opera-
tion, the DMA-capable storage device would be pro-

grammed to retrieve incoming data directly from the
Lanai SRAM buffer after a wire-to-Lanai DMA opera-
tion completes.

It is important to note that almost no source code
changes are needed in the nbd server to support this en-

hanced data path. The server process still issues read()
or write() and gm send() calls, unaware of the under-
lying transfer mechanism. The desired semantics emerge

from the way the Linux block driver layer, the kernel’s
VM subsystem and GM’s user level networking capa-
bilities are combined to construct the data path.

3.3 Discussion

An analysis of the proposed data path at the logical
layer can be seen in Fig. 7(a). There are almost no

gmblock-specific changes, compared to a GM-based nbd
implementation. To achieve this, we re-use existing pro-
gramming abstractions, as provided by GM and the

Linux kernel. By building on O DIRECT based access to
storage, our approach is essentially disk-type agnostic.
Since the CPU is involved implicitly in the setup phase

of the transfer, the server is not limited to sharing raw
block device blocks. Instead, it could share block data
in structured form, e.g. from a file in a standard ext2

filesystem. Or, it could be used over a software RAID
infrastructure, combining multiple disks in a RAID0
configuration.

Another point to take into account is ensuring co-
herence with the kernel’s page cache. Since blocks move

directly from NIC to storage and vice versa, a way is
needed to ensure that local processes do not perform
I/O on stale data that are in the kernel’s page cache

and have not been invalidated. We avoid this problem
by keeping the kernel in the processing loop, but not in
the data path. Its direct I/O implementation will take

care of invalidating affected blocks in the page cache,

9

if an O DIRECT write takes place, and will flush dirty

buffers to disk before an O DIRECT read.

Using the proposed path means that server CPU
and RAM are no longer in the processing path. Al-

though this eliminates architectural bottlenecks, it means
no server-side prefetching and caching is possible. More-
over, overall performance depends on the interaction of

gmblock with the overlying filesystem and application,
and the amount of read-write sharing that takes place
through shared storage. We discuss the importance of

these three factors, prefetching, caching and read-write
sharing below.

Server-side buffers on storage servers may play an
important role in prefetching data from the storage
medium for efficiency. Data prefetching is still possi-

ble in gmblock, but has to be initiated by the client
side. Experimental evaluation on an OCFS2 over gm-
block setup (Section 7) shows that prefetching is indeed

necessary, to support good performance for small appli-
cation reads.

Regarding caching, although server-side caching is

no longer possible, client-side caching still takes place:
Client systems treat gmblock-provided storage as a lo-
cal hard disk, caching reads and keeping dirty buffers

on writes. Data need to be written back only to ensure
correctness for read-after-write sharing. Moreover, the
aggregate size of memory in clients can be expected to

be much larger than storage server memory.

Server-side caching may also prove to be beneficial

in coalescing small reads and writes, forming more ef-
ficient requests to storage. This is highly dependent on
the overlying application’s access patterns. Whether us-

ing the proposed data path leads to performance in-
crease depends on the balance of memory-to-memory
copy throughput, imposed CPU load and memory-to-

storage transfers, relative to direct storage-to-network
throughput.

Finally, server-side caching may prove important for
applications with very heavy read-write sharing through
the filesystem. If there is no special provision for di-

rect client-to-client synchronization of dirty data, either
by the application itself or by the filesystem, then the
storage server may be used essentially as a buffer for
client-to-client block transfers with many small writes

followed by many small related reads. For such work-
loads, using gmblock’s short-circuit data path is not an
appropriate choice. If write coalescing is needed, then

the framework can be set to cache writes, while still al-
lowing reads to happen over the direct data path, or it
can be run in fully cached mode.

On the other hand, the impact of heavy read-write
sharing in application performance is a well-known prob-

lem and there are numerous efforts in the literature to

attack it at the filesystem and application level. Oracle

9i uses a distributed caching mechanism called “Cache
Fusion” [14] to support read and write-sharing with di-
rect instance-to-instance transfers of dirty data over the

interconnect, instead of going through shared storage.
Disk I/O happens only when the needed blocks are not
present in any of the client-side caches. Similarly, in the

HPC context, heavy read-write block contention arises
in MPI applications with multiple peers working on the
same block set. To attack the problem, GPFS features a

special data shipping mode [22], which the free ROMIO
implementation of MPI-IO has also been extended to
support [3]. Data shipping mode minimizes read-write

block contention by assigning distinct parts of a shared
file to distinct processes, so that only a single process
issues read/write requests for a specific block during

collective I/O.

To summarize, the applicability of gmblock’s direct
I/O path depends significantly on the access patterns of

the I/O workload. Workloads for which it is a good fit
are those with little data sharing, e.g., shared storage
for live VM migration and read-write server workloads
on independent data sets, or workloads where nodes can

be assumed to coordinate access at a higher level, e.g.,
the Oracle RDMBS or MPI-IO applications with data
shipping optimizations.

4 Implementation details

The implementation of gmblock’s optimized data path
involves changing two different subsystems: First, GM

must be extended to support buffers in Lanai SRAM.
Second, the Linux VM mechanism must include sup-
port for treating Lanai SRAM as host RAM, so that

direct I/O from and to PCI memory-mapped I/O re-
gions is possible.

4.1 GM support for buffers in Lanai SRAM

The GM middleware needs to be enhanced, as to allow
the allocation, mapping and manipulation of buffers re-
siding in Lanai SRAM by userspace applications. At the

same time, it is important to preserve GM semantics
and UNIX security semantics regarding process isola-
tion and memory protection, as is done for message

passing from and to userspace buffers in host RAM.

The described changes were tested on various com-
binations of GM-2.0 and GM-2.1 on an Intel i386 and

an Intel EM64T system. However, the changes affect
the platform-independent part of GM, so they should
be usable on every architecture/OS combination that

GM has been ported to.

10

This is the functionality that needs to be supported,

along with the parts of GM that are affected:

– Allocation of buffers in Lanai SRAM (GM firmware)
– Mapping of buffers onto the VM of a process in user-

space (GM library, GM kernel module)
– Sending and receiving messages from/to Lanai SRAM

using gm send() and gm provide receive buffer()

(GM library, GM firmware)

For the first part, the firmware initialization proce-

dure was modified, so that a large, page-aligned buffer
is allocated for gmblock’s use, off the memory used for
dynamic allocation by the firmware. Our testbed uses

Myrinet NICs with 2MB of SRAM, out of which we
were able to allocate at most 700KB for gmblock’s use
and still have the firmware fit in the available space and

execute correctly.

The second part involved changes in the GM library,
which tries to map the shared memory buffer. The GM

kernel module verifies that the request does not compro-
mise system security, then performs the needed map-
ping. The Lanai SRAM buffer is shared among process-

es, but different policies may be easily implemented, by
changing the relevant code in the GM kernel module.

Finally, to complete the integration of the SRAM
buffer in the VM infrastructure and allow it to be used
transparently for GM messaging, we enhance the GM

library so that the requirement for all message exchange
to be done from/to in-RAM buffers is removed. At the
userspace side the library detects that a GM operation

to send a message or to provide a receive buffer refers to
Lanai SRAM, and marks it appropriately in the event
passed to the Lanai. There, depending on the type of

the request:

– For a send request, the SDMA state machine omits
the Host-to-Lanai DMA operation, constructs the
needed Myrinet packets and passes them directly to

SEND, without any intermediate copies.
– Things are more complicated when incoming da-

ta need to be placed in an SRAM buffer by the

RDMA state machine, since incoming packet da-
ta are placed in predefined message buffers by the
hardware before any buffer matching. In the com-

mon case of receiving into RAM, they are moved
to their final destination during the Lanai-to-Host
DMA phase. When receiving into SRAM buffers this

is replaced by a copy operation, undertaken by a
copy engine on the Lanai. The memory arbitration
scheme of the LanaiX ensures that the copy pro-

gresses without impacting the rate at which concur-
rent, pipelined packet receives occur.

4.2 Linux VM support for direct I/O with PCI ranges

To implement gmblock’s enhanced data path, we need
to extend the Linux VMmechanism so that PCI memory-

mapped I/O regions can take part in direct I/O opera-
tions. So far, the GM buffer in Lanai SRAM has been
mapped to a process’s virtual address space and is ac-

cessible using PIO. This mapping translates to physical
addresses belonging to the Myrinet NIC’s PCI memory-
mapped I/O (MMIO) region. The MMIO range lies just

below the 4GB mark of the physical address space in
the case of the Intel i386 and AMD x86-64 platforms.

To allow the kernel to use the relevant physical ad-
dress space as main memory transparently, we extend
the architecture-specific part of the kernel related to

memory initialization so that the kernel builds page
management structures (pageframes) for the full 4GB
physical address range and not just for the amount

of available RAM. The relevant struct page struc-
tures are incorporated in a Linux memory zone, called
ZONE PCIMEM and are marked as reserved, so that they

are never considered for allocation to processes by the
kernel’s memory allocator.

With these modifications in place, PCI MMIO ranges
are manageable by the Linux VM as host RAM. All
complexity is hidden behind the page frame abstrac-

tion, in the architecture-dependent parts of the kernel;
even the direct I/O layer does not need to know about
the special nature of these pages.

5 Experimental evaluation

To quantify the performance benefits of employing gm-
block’s short-circuit data path we compare three dif-

ferent nbd systems in a client-server block-level storage
sharing configuration. The first one is a prototype im-
plementation of gmblock with message buffers on Lanai

SRAM (hereafter gmblock-sram) so that direct disk-
to-NIC transfers are possible. The second is a standard
TCP/IP-based system, Red Hat’s GNBD, the reworked

version of NBD that accompanies GFS (tcpip-gnbd).
GNBD runs over the same Myrinet, with Ethernet emu-
lation. The third one is gmblock itself, running over GM

without the proposed optimization. Its performance is
representative of RDMA-based implementations using
a data path which crosses main memory (gmblock-

ram).

The evaluation concerns three metrics: (a) the sus-

tained bandwidth for remote read operations (b) the
sustained bandwidth for remote write operations and
(c) the server-side impact on local executing compu-

tational workloads. At each point in the evaluation we

11

Server A Server B

Processor 2x Pentium III@1266MHz Pentium 4@3GHz

M/B Supermicro P3TDE6 Intel SE7210TP1-E

Chipset Serverworks ServerSet III HE-SL, CIOB20 PCI bridge Intel E7210 chipset, 6300ESB I/O controller hub

I/O Bus 2-slot 64bit/66MHz PCI 3-slot 64bit/66MHz PCI-X

RAM 2x PC133 512MB SDRAM 2 x PC2700 512MB SDRAM DDR

Disks 8x Western Digital WD2500JS 250GB SATA II

I/O controller 3Ware 9500S-8 SATA RAID and MBL

NIC Myrinet M3F2-PCIXE-2

Table 1 Technical specifications of storage servers used in experimental testbed

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Request Size (KB)

local-mbl-ram
local-mbl-sram
local-raid-ram

local-raid-sram

(a) RAID and MBL, Server A

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Request Size (KB)

local-mbl-ram
local-mbl-sram
local-raid-ram

local-raid-sram

(b) RAID and MBL, Server B

Fig. 8 Sustained local bandwidth for both storage media on Servers A and B

identify the performance-limiting factor and try to mit-

igate its effect, in order to observe how the different
architectural limitations come into play.

We experiment with storage servers of two different
configurations: Server A is an SMP system of two Pen-
tium III processors, with a 2-slot PCI bus, while Server

B is a Pentium 4 system, with more capable DDR mem-
ory and a 3-slot PCI-X bus. The exact specifications can
be found in table 1.

The storage medium to be shared over Myrinet is
provided by a 3Ware 9500S-8 SATA RAID controller,

which has 8 SATA ports on a 64bit/66MHz PCI adapter.
We built a hardware RAID0 array out of 8 disks, which
distributes data evenly among the disks with a chunk

size of 64KB and is exported as a single drive to the
host OS. We use two nodes, one of configuration A
functioning as the client, the either as the server (of

either configuration A or B). The nodes are connected
back-to-back with two Myrinet M3F2-PCIXE-2 NICs.
The NICs use the Lanai2XP@333MHz processor, with

2MB of SRAM and feature two 2+2Gbit/s full-duplex
fiber links. Linux kernel 2.6.22, GM-2.1.26 and 3Ware
driver version 2.26.02.008 are used. The I/O scheduler

used is the anticipatory scheduler (AS).

We also experiment with a custom solid-state stor-

age device built around another Myrinet M3F2-PCIXE-
2 NIC, which is able to deliver much better throughput
even for very small request sizes. We have written a

Linux block device driver and custom firmware for the
card, which enables it to be used as a standard block de-
vice. Block read and write requests are forwarded by the

host driver (the Myrinet BLock driver, or “MBL”) to
the firmware, which programs the DMA engines on the
NIC to transfer block data from and to Lanai SRAM.

Essentially, we use the card to simulate a very fast, al-
beit small, storage device which can move data close to
the rate of the PCI-X bus.

Experiment 1a: Local disk performance

We start by measuring the read bandwidth deliv-

ered by the RAID controller, locally, performing back-
to-back direct I/O requests of fixed size in the range of
1, 2, . . ., 512KB, 1024KB. The destination buffers reside

either in RAM (local-raid-ram) or in Lanai SRAM
(local-raid-sram, short-circuit path) We repeat this
experiment for the MBL device as well (local-mbl-ram,

local-mbl-sram). In the following, 1MB = 220 bytes.
With the adapters installed on the 64bit/66MHz PCI-X
bus of Server B, we get the bandwidth vs. request size

curves of Fig 8(b).

12

A number of interesting conclusions can be drawn.

First, for a given request size these curves provide an
upper bound for the performance of our system. We
see that the RAID throughput increases significantly

for request sizes after 128KB-256KB (reaching a rate
of rdisk→sram =335MB/s, with 512KB request size for
buffers in SRAM) while performance is suboptimal for

smaller sizes: the degree of parallelism achieved with
RAID0 is lower (fewer spindles fetch data into mem-
ory) and execution is dominated by overheads in the

kernel’s I/O subsystem. On the other hand, MBL de-
livers good performance even for small request sizes and
comes close to the theoretical 528MB/s limit imposed

by the PCI-X bus itself.

We note that throughput for transfers to RAM lev-

els off early, at ∼217MB/s. We found this is due to an
architectural constraint of the Intel motherboard used
on Server B: The 6300ESB I/O hub supporting the

PCI-X bus is connected to the 827210 Memory Con-
troller through a “hub link” interface which is limited
to 266MB/s. Server A’s PCI bridge does not exhibit a

similar issue (Fig. 8(a)).

Experiment 1b: Remote read performance

We then proceed to measure the sustained remote

read bandwidth for all three implementations. A user-
space client runs on a machine of configuration A gen-
erating back-to-back requests of variable size in two se-

tups, one using Server A and one with Server B. To
achieve good utilization of Myrinet’s 2+2Gbit/s links
it is important to pipeline requests correctly. We test-

ed with one, two and four outstanding requests and
the corresponding configurations are labeled gmblock-

ram-{1,2,4} and gmblock-sram-{1,2,4} for the GM-
based and short-circuit path case respectively. To keep

the figures cleaner we omit the curves for gmblock-

{ram,sram}-2. In general, the performance of gmblock-
{ram,sram}-2 was between gmblock{ram,sram}-1 and

gmblock{ram,sram}-4, as expected.
We are interested in bottlenecks on the CPU, the

memory bus, the RAID controller and the PCI/PCI-
X bus. In general, GNBD performs poorly and cannot

exceed 68MB/s on our platform; TCP/IP processing for
GNBD consumes a large fraction of CPU power and a
large percentage of memory bandwidth for intermediate

data copying. A representative measurement is included
in Fig. 9(a).

Performance for gmblock-ram-1 and gmblock-sram-1
is dominated by latency, since only one block read re-
quest is in flight at all times. Resource utilization is

suboptimal, since the network interface is idle when
the storage medium retrieves block data and vice-versa,
hence the sustained throughput is low. The results are

consistent with block data being transferred from the

disk to buffers in RAM or SRAM (at a rate of rdisk→ram

or rdisk→sram respectively), then from RAM or SRAM
to the Myrinet fabric (at a rate of rram→net, rsram→net

respectively). For example, in the case of gmblock-

sram and the 3Ware controller on Server B (Fig 10(a)),
rdisk→sram =335MB/s, rsram→net =462MB/s and the
expected remote read rate is

rgmblock−sram = 1/

(
1

rdisk→sram
+

1

rsram→net

)
which is 194MB/s, very close to the observed value of

186MB/s.

When two or four requests are outstanding, the bot-
tleneck shifts, with limited PCI-to-memory bandwidth

determining the overall performance of gmblock-ram.
In the case of Server B (Fig. 10(b)), gmblock-ram has to
cross the hub link (266MB/s theoretical) to main mem-

ory twice, so it is capped to half the value of rdisk→ram =
217MB/s. Indeed, for request sizes over 128KB, it can
no longer follow the local storage bandwidth curve and

levels off at ∼100MB/s. This effect happens later for
Server A’s PCI host bridge, since its PCI to memo-
ry bandwidth is ∼398MB/s. Indeed, with request sizes

over 128KB for MBL, gmblock-ram is capped at 198MB/s.
On the other hand, gmblock-sram-1 has no such lim-
itation. In the case of MBL on Server A, gmblock-

sram-{2,4} deliver more than 90% of the locally avail-
able bandwidth to the remote node for 256KB and
128KB-sized requests respectively, a two-fold improve-

ment over gmblock-ram.

When used with a real-life RAID storage subsys-
tem, gmblock-sram-{2,4} utilizes the full RAID band-
width for any given request size up to 256KB: for Serv-

er B that is 220MB/s, a more than two-fold improve-
ment. For Server A that is 214MB/s, 20% better than
gmblock-ram. Since gmblock-ram has already saturat-

ed the PCI-to-memory link, the improvement would be
even more visible for gmblock-sram-2 if larger request
sizes could be used, since the RAID bandwidth cap

would be higher for 512KB requests: a 512KB request
equals the stripe size of the RAID array and is processed
by all spindles in parallel. However, the maximum num-

ber of outstanding requests is limited by the amount of
SRAM that’s available for gmblock’s use, which is no
more than 700KB on our platform, thus it only suffices

for a single 512KB request. The small amount of SRAM
on the NIC limits the maximum RAID bandwidth made
available to gmblock-sram. We propose synchronized

GM operations to work around this limitation in sec-
tion 6.

In the case of the higher-performing MBL, we note
that a higher number of outstanding requests is needed

to deliver optimal bandwidth; moreover, a significant

13

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Request Size (KB)

local-ram
local-sram
tcpip-gnbd

gmblock-ram-1
gmblock-ram-4

gmblock-sram-1
gmblock-sram-4

(a) RAID bandwidth

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Request Size (KB)

local-ram
local-sram

gmblock-ram-1
gmblock-ram-4

gmblock-sram-1
gmblock-sram-4

(b) MBL bandwidth

Fig. 9 Sustained remote read bandwidth, Server A

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Request Size (KB)

local-ram
local-sram

gmblock-ram-1
gmblock-ram-4

gmblock-sram-1
gmblock-sram-4

(a) RAID bandwidth

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Request Size (KB)

local-ram
local-sram

gmblock-ram-1
gmblock-ram-4

gmblock-sram-1
gmblock-sram-4

(b) MBL bandwidth

Fig. 10 Sustained remote read bandwidth, Server B

percentage of the maximum bandwidth is achieved even
for small, 32-64KB request sizes.

It is also interesting to see the effect of remote I/O

on the locally executing processes on the server, due
to interference on the shared memory bus. Although
gmblock-ram removes the CPU from the critical path,

it still consumes two times the I/O bandwidth on the
memory bus. If the storage node is also used as a com-
pute node, memory contention leads to significant exe-

cution slowdowns.

Experiment 1c: Effect on local computation

For Experiment 1c, we run tcpip-gnbd, gmblock-
ram-2 and gmblock-sram-2 along with a compute in-
tensive benchmark, on only one of the CPUs of Server

A. The benchmark is a process of the bzip2 compres-
sion utility, which performs indexed array accesses on
a large working space (∼8MB, much larger than the

L2 cache) and is thus sensitive to changes in the avail-

able memory bandwidth, as we have shown in previous
work [13]. There is no processor sharing involved; the

nbd server can always run on the second, otherwise idle,
CPU of the system. In Fig. 5 we show the normalized
execution time of bzip2 for the three systems. In the

worst case, bzip2 slows down by as much as 67%, when
gmblock-ram-2 is used with 512KB requests. On the
other hand, the benchmark runs with negligible inter-

ference when gmblock-sram is used, since the memory
bus is bypassed completely and its execution time re-
mains almost constant.

Experiment 1d: Write Performance

We also evaluate performance in terms of sustained

remote write bandwidth, similar to the case of remote
reads. The results for Server B are displayed in Fig. 12.
Note that the maximum attained write performance of

the RAID controller is much worse than the read case,

14

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

1 2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Request Size (KB)

local-ram
local-sram

local-pcimem
gmblock-ram-1
gmblock-ram-4

gmblock-pcimem-1
gmblock-pcimem-4

(a) RAID bandwidth

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Request Size (KB)

local-ram
local-sram

local-pcimem
gmblock-ram-1
gmblock-ram-4

gmblock-pcimem-1
gmblock-pcimem-4

(b) MBL bandwidth

Fig. 12 Sustained remote write bandwidth, Server B

however its bandwidth vs. request size curve rises soon-
er due to the use of on-board RAID write buffers.

Again gmblock-ram is capped at ∼100MB/s due to

crossing the main memory bus. However, the perfor-
mance of gmblock-sram is much lower than expected
based on the read results. We discovered and later con-

firmed with Myricom this is due to a hardware limi-
tation of the LanaiX processor, which cannot support
being the target of PCI read transactions efficiently and

delivers only ∼25MB/s PCI read bandwidth.

To work around this limitation, we introduce a third
configuration; we can construct a data path which still
bypasses main memory but uses intermediate buffers

on the peripheral bus. As buffer space we decided to
use memory on an Intel XScale-based PCI-X adapter,
the Cyclone 740 [6], placed in the 3rd slot of Server

B’s 3-slot PCI-X bus. It features an Intel XScale 80331
I/O processor and 1GB of DDR memory, on an inter-
nal PCI-X bus. A PCI-X to PCI-X bridge along with

an Address Translation Unit allows exporting parts of

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

1 2 4 8 16 32 64 128 256 512 1024

N
or

m
al

iz
ed

 E
xe

cu
tio

n
T

im
e

Request Size (KB)

tcpip-gnbd
gmblock-ram-2

gmblock-sram-2

Fig. 11 Interference on the memory bus

this memory to the host PCI physical address space.
By placing the message buffers of gmblock on the card,

we can have the Lanai DMAing data into this memory,
then have the storage controller read data off it, which
is more efficient than reading data off Lanai SRAM di-

rectly. This path crosses the PCI bus twice, hence is
limited to half its maximum bandwidth. Moreover, even
after careful tuning of the Intel XScale’s PCI-X bridge

to support efficient prefetching from the internal bus in
order to serve incoming bus read requests, the 3Ware
RAID controller was only able to fetch data at a rate of

∼133MB/s compared to ∼160MB/s from main memory
(the local-{ram, pcimem} curves). Thus, the perfor-
mance of the NIC −→ PCI buffers −→ storage path

(gmblock-pcimem) is comparable to that of gmblock-
ram, however it has the advantage of bypassing main
memory, so it does not interfere with memory accesses

by the host processor.

6 Synchronized GM send operations

6.1 Motivation

Overall, gmblock delivers significant bandwidth improve-
ments for remote read / write operations compared to

conventional data paths crossing main memory. Howev-
er, its performance still lags behind the limits imposed
by network and local storage bandwidth; in the case of

MBL on Server B, gmblock-sram achieves ∼400MB/s
(for 128KB-sized requests in the gmblock-sram-4 case,
which is 86% of the maximum available read bandwidth

available locally, while it achieves ∼220MB/s (65% of
the maximum) when using a real-life RAID-based stor-
age system. The chief reason for low efficiency lies in the

interplay between a number of conflicting factors and

15

architectural constraints: (a) The nbd system needs an

outstanding request queue of sufficient depth in order
to pipeline requests efficiently. (b) RAID-based stor-
age systems deliver best performance when provided

with sufficiently large requests (Fig. 8(a)). (c) Cluster
interconnect NICs, such as the Myrinet NICs on our
platform, feature a limited amount of memory, usually

only meant to buffer message packets before injection
into the network.

The proposed approach moves data directly from

disk to NIC, thus the maximum number of outstanding
requests is limited by the amount of SRAM available
for gmblock’s use. In our case, using standard Myrinet

NICs with 2MBs of SRAM, we were able to reserve
∼700KB for gmblock buffers. It is impossible to allocate
more in productions environments, because we already

had to disable a number of GM features, e.g., Eth-
ernet emulation, decrease the maximum network size
supported and reduce the amount of SRAM reserved

to cache virtual-to-physical translations.
This means that only 1 × 512MB request or 2 ×

256KB or 4 × 128KB requests may be in flight at any
moment. To allow gmblock to use larger requests, while

still achieving good disk and network utilization, we fo-
cus on increasing the amount of overlapped processing
within each individual request. Our aim is to have the

network sending data for a remote block read request
even before the storage medium has finished serving it.
This way, we can take advantage of the full bandwidth

of the RAID controller while still having good overlap-
ping of disk with network I/O.

6.2 Design

Servicing a block read request entails two steps: Re-
trieving data from disk to SRAM, then sending data
from SRAM to the network.

To enable intra-request overlapping, the send from
SRAM operation needs to be synchronized with the
disk read operation, to ensure that only valid data are

sent over the network. Ideally, this should be done with
minimum overhead, in a portable, block device driver-
independent way and with minimal changes to the se-

mantics of the calls used by the nbd server for local and
network I/O.

This kind of synchronization could be implemented

in software, inside the nbd server, dividing each large re-
mote read request of l bytes (e.g., 1MB) in much smaller
chunks of c bytes (e.g., 4KB) then submitting them si-

multaneously via the POSIX Asynchronous I/O facility.
However, this imposes significant software overhead.

We propose a synchronization mechanism working

directly between the storage medium and the Myrinet

NIC, in a way that does not involve the host CPU and

OS running on top of it at all, while at the same time
remaining independent of the specific type of block stor-
age device used.

Let us consider the scenario when the server starts
a user level send operation before the actual read()

system call to the Linux I/O layer. This way, sending
data over the wire is bound to overlap with fetching
data from block storage into the Lanai SRAM. How-

ever, this approach will most likely fail, since there is
no guarantee that the storage medium will be able to
deliver block data fast enough.

To solve this problem we introduce the concept of

a synchronized property for user level send operations.
A synchronized GM operation ensures that the data to
be sent from a message buffer are valid, before being

put on the wire. When no valid data are available, the
firmware simply ignores the send token while polling.
The NIC works in lockstep with an external agent (the
block device), throttling its send rate to match that of

the incoming data (in our case, rdisk).

The NIC notices data transfer completions in chunks
of c bytes. The value of c determines the synchroniza-
tion grain and the degree of overlapping achieved (see

Fig. 13); The NIC only starts sending after t1 = c
rdisk

time units, then both the storage device and the NIC
are busy for t2 = l−c

rdisk
, then the pipeline is emptied in

t3 = c
rnet

time units. Smaller values of c trade-off Lanai
CPU usage for finer-grained synchronization.

Storage

NIC

Storage

NIC

chunk

Read req. 0

Send req. 0

Read req. 1

Send req. 1

Read req. 0

Send req. 0

Read req. 1

Send req. 1

t1 t3

t2

t

Non-overlapped network
I/O

Synchronized sends for
overlapped network I/O

Fig. 13 Intra-request phase overlap

The semantics described above break the assump-
tion that the whole of the message is available when the
send request is issued, allowing the NIC to synchronize

with an external agent while the data are being gen-
erated. However, as we discovered experimentally and
explain in greater detail in section 6.4, this does not suf-

fice to extract good performance from our platform; the
design retains the assumption that the external agent
places data into the message buffer as a single stream,

in a sequential fashion. However, most real-world stor-
age devices rely on parallelizing request processing to
deliver aggregate high performance, e.g. by employing

RAID techniques. Thus, incoming data comprise multi-

16

ple slower streams. We incorporate this multiplicity of

streams in the semantics of synchronized send opera-
tions by allowing the sender to construct network pack-
ets from distinct locations inside the message buffer,

and the receiver to support out-of-order placement of
incoming fragments. Noticing DMA transfer comple-
tions anywhere in the message buffer is prohibitive, so

we make a compromise. “Multiple stream” sends need
the user to provide hints on the position and length of a
finite of incoming streams inside the buffer. In our case,

they are derived by the RAID array member count and
chunk size.

Although our implementation of synchronized op-
erations is Myrinet/GM based, it is portable to any

programmable NIC which exposes part of its memory
onto the PCI address space and features an onboard
CPU. Synchronization happens in a completely peer-

to-peer way, over the PCI bus, without any host CPU
involvement.

6.3 Implementation issues on Myrinet/GM

The Myrinet NIC does not provide any functionality
to detect external agents placing data directly into its

SRAM via DMA, e.g., via a “dirty memory” bitmap.
So, we emulate such functionality in firmware, by mark-
ing the relevant SRAM segments with 32-bit mark-

ers, and having the Lanai detect DMA completions by
polling, as they get overwritten by incoming data. The
probability of at least one overwritten marker going un-

detected because the value being sent coincides with the
magic value being used is very low, e.g., for l =1MB

and c =4KB, it holds: P = 1−
(
1− 2−32

)⌈ l
c ⌉ =⇒ P =

5.96×10−8. Still, to ensure correctness, an extra marker
is used right after the end of the block, and set by the

nbd server when the data transfer is complete. Thus, in
the worst case, with probability P no overlapping takes
place.

For multiple stream support, we modified GM’s Go

Back N protocol so that out-of-order construction of
message packets at the sender side and placement at
the receiver side is possible. Whenever a packet is in-

jected into the network, the SDMA state machine keeps
track of stream-specific state inside the associated send
record based on the stream that packet data originates

from; should the connection be rewound due to lost
packets or timeouts, the firmware will know which of
the stream-specific pointers to modify when resending.

Similarly, the RDMA state machine does not assume
incoming message fragments are to be placed serially
inside the matched buffer; we extended the GM packet

header so that an optional offset field is used to deter-

mine where to DMA incoming fragment data inside the

message buffer.
The Lanai cannot address host memory directly but

only through DMA. The cost of programming the PCID-

MA engine to monitor the progress of a block transfer
to in-RAM buffers is prohibitive, so synchronized GM
operations are only available when sending from buffers

in Lanai SRAM. However, this suffices for implement-
ing an optimized version of gmblock’s data path.

6.4 Experimental evaluation

This section presents an experimental evaluation of gm-

block extended to support synchronized operations ver-
sus the base version of gmblock using a direct disk-
to-NIC data path. We do not include any instances

of gmblock-ram-{1,2,4} since we have already shown
how staging data in RAM-based buffers is detrimental
to overall performance. The results were taken on Serv-

er B because it features a better performing, PCI-X
bus.

Experiment 2a: Synchronized Sends

We use two versions of gmblock: gmblock-synchro-
single issues single-stream synchronized operations with
one outstanding request, while gmblock-synchro-

multiple supports multiple-stream synchronized oper-
ations. The number of streams is set equal to the num-
ber of disks in the RAID array. The results for both

storage media are displayed in Fig 14(a), Fig 14(a) for
the 3Ware Controller and the MBL device respectively.

As expected using gmblock-synchro-single yields

much better throughput over gmblock-sram for MBL
(370MB/s, a 77% improvement, for 256KB-sized re-
quests). Even with a single outstanding request gmblock-

synchro-single reaches 91% of the maximum read
throughput of gmblock-sram-4, by improving the la-
tency of individual requests (e.g. 59% for 64KB-sized

requests). This is a sharp drop-off in performance for
512KB-sized requests, which we focus on shortly. Con-
trary to MBL the performance gains of gmblock-synch

ro-single for the RAID configuration are marginal
(7% improvement over gmblock-sram-1, for 512KB-
sized requests).

Experiment 2b: RAID data movement
To better understand the reasons for the perfor-

mance drop-off for 512KB MBL requests and the rather

low performance of the RAID configuration, we need
more insight on the way DMA operations progress over
time. We use a custom utility, dma poll, which pro-

vides data movement traces using predefined marker
values (fig 16), similarly to the method described in
Section 6.2. This way we can monitor when each indi-

vidual chunk is DMAed into the message buffer. We find

17

 0

 50

 100

 150

 200

 250

 300

 350

1 2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Request Size (KB)

local-sram
gmblock-sram-1
gmblock-sram-4

gmblock-synchro-single
gmblock-synchro-multiple

(a) RAID controller, sustained read bandwidth

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1 2 4 8 16 32 64 128 256 512 1024

B
an

dw
id

th
 (

M
B

/s
)

Request Size (KB)

local-sram
gmblock-sram-1
gmblock-sram-4

gmblock-synchro-single
gmblock-synchro-multiple

(b) MBL, sustained read bandwidth

Fig. 14 Sustained remote read bandwidth for single and multiple-stream synchronized operations

STATE_FINALIZE (return receive buffer)
STATE_SEND (non−overlapped send time)
STATE_SEND_INIT (prepare buffer, post event)
STATE_READ (block read)
STATE_INIT (wake, unpack)

 0

 1000

 2000

 3000

 4000

4 8 16 32 64 128 256 512

T
im

e
(m

s)

Request Size (kB)

(a) RAID controller

STATE_FINALIZE (return receive buffer)
STATE_SEND (non−overlapped send time)
STATE_SEND_INIT (prepare buffer, post event)
STATE_READ (block read)
STATE_INIT (wake, unpack)

 0

 1000

 2000

 3000

 4000

4 8 16 32 64 128 256 512

T
im

e
(m

s)

Request Size (kB)

(b) MBL

Fig. 15 Latency breakdown per request size for gmblock-{ram, sram, synchro-single, synchro-multiple}

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000

T
im

e
de

st
ro

ye
d

(u
se

c)

(a) RAID controller, AS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 200 400 600 800 1000

T
im

e
de

st
ro

ye
d

(u
se

c)

(b) RAID controller, CFQ

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000

T
im

e
de

st
ro

ye
d

(u
se

c)

(c) MBL, AS

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 200 400 600 800 1000

T
im

e
de

st
ro

ye
d

(u
se

c)

(d) MBL, CFQ

Fig. 16 DMA traces for the anticipatory and CFQ schedulers, 1024KB-sized requests

two reasons behind these results: (a) RAID data move-
ment: gmblock-synchro-single ignores the fact that
data are placed in different parts of the message buffer

in parallel (see fig. 16(b)) and only overlaps disk and
network I/O for the first chunk. (b) Linux I/O schedul-
ing: The maximum hardware segment size for DMA op-

erations with the MBL device is 256KB. For requests
greater than that, the actual order that the segments
are submitted depends on the Linux I/O scheduler. Us-

ing the anticipatory I/O scheduler leads to the two seg-
ments being reordered for 512KB requests (fig. 16(c)).

18

Hence the degree of overlapping for gmblock-synchro-

single is lower.

Using gmblock-synchro-multiple works around
these problems and achieves read rates close to that

of local access. In the case of the 3Ware controller it
reaches 92% of the maximum bandwidth (40% better
than gmblock-sram-4) achieving near-perfect overlap-

ping. This can be seen in fig. 15 where we have plot-
ted the time spent for various steps of request pro-
cessing for the gmblock server. We identify five differ-

ent states: (a) STATE INIT: Request received, being un-
packed (b) STATE READ: In disk I/O (c) STATE SEND

INIT: Posting send event to the Lanai (d) STATE SEND:

Disk I/O done, send operation in progress (e) STATE

FIN: Returning receive token to GM The time spent
on states other than STATE READ or STATE SEND was

found to be negligible. STATE SEND represents network
I/O time that was not overlapped with disk I/O. It
indicates the degree of disk to network I/O overlap-

ping achieved and is negligible for gmblock-synchro-
multiple.

7 Parallel filesystem deployment over gmblock

We have completed a prototype deployment of Oracle

Cluster File system (OCFS2) over gmblock-provided
shared storage, which allows us to evaluate gmblock
with real-life application I/O patterns. This section de-

scribes the optimizations in the kernelspace gmblock
client in order to support efficient end-to-end operation,
and experimental results from the execution of various

workloads on the parallel filesystem.

7.1 Client-side design and implementation

On the client side, gmblock runs as a kernelspace driver,

presenting a standard block device interface to the rest
of the system. Retaining the standard block device in-
terface makes our framework instantly usable either di-

rectly as a raw device, e.g. by VM instances or a parallel
database, or indirectly, through a shared-disk filesystem
using standard POSIX I/O. Moreover, we retain the

highly optimized, production-quality I/O path of the
Linux kernel, which does I/O queueing, scheduling, re-
quest coalescing and mapping to physical scatter-gather

lists, before presenting the requests to our driver.

The client uses Myrinet/GM for networking. GM
targets user level communication, and requires all data

to be in pinned-down buffers, contiguous in application
VM space. To the contrary, requests handed to a block
device driver involve I/O from/to physically discontigu-

ous pages in the page cache. Thus, a straightforward im-

plementation of the client would either have to remap

those pages in the kernel’s VM space and register them
with GM before every message exchange – a very ex-
pensive operation – or move data through preallocated

GM buffers.

We have developed custom extensions to GM to sup-
port zero-copy I/O, without any staging of block data
in intermediate buffers. Since the client is already in the

kernel, a block read or write request is specified in terms
of a physical scatter-gather list; GM’s address trans-
lation mechanism is of no value. Instead, we extend

GM messaging, so that outbound and inbound message
buffers can refer to scatter-gather lists. Two new prim-
itives support this functionality: gm gather send with

callback(), gm provide receive scatterlist with

tag().

Essentially, we implement a stub of the remote stor-
age medium on the NIC itself. This scheme, combined

with the short-circuit data path on the server side, sup-
ports end-to-end zero-copy data movement from remote
storage to scattered client memory segments. Scatter-

gather I/O can reach all the way to user buffers for
applications which implement their own data caching
policies and perform direct I/O.

7.2 Experimental evaluation

Our testbed consists of 4 cluster nodes in configuration
A and a storage server of configuration B. All cluster
nodes access the 3Ware RAID0 array over virtual de-

vices backed by the gmblock kernelspace client. They
run OCFS2 1.5.0, which is part of the standard Linux
kernel version 2.6.28.2. We had to patch the kernel for

16KB kernel stacks instead of the default 8KB, to work
reliably with the long function call chains coming from
stacking OCFS2 over gmblock over GM.

Using the proposed server-side data path means no

server-side caching and prefetching is possible. To ex-
plore their effect, we compare two versions of gmblock:
gmblock-ramcache, a version which passes both read

and write data through RAM buffers using cached I/O,
and gmblock-sram, which uses the proposed disk-to-
NIC path for reads and only issues direct I/O requests.

Writes still go through main memory, uncached, to work
around the hardware limitation of the LanaiX which
cannot support efficient peer-to-peer transfers as a read

target (see Section 5).

Caches are cleared on every cluster node before ev-
ery experiment to ensure consistent results.

We run three different application benchmarks on
the OCFS2-over-gmblock setup: IOzone [19], a server

workload, and MPI-Tile-I/O [23].

19

 0

 50

 100

 150

 200

 250

 300

64 128 256 512 1024 2048 4096

B
an

dw
id

th
 (

M
B

/s
)

Request Size (KB)

small-sram
small-ramcache

large-sram
large-ramcache

(a) direct I/O

 0

 100

 200

 300

 400

 500

 600

 700

64 128 256 512 1024 2048 4096

Request Size (KB)

small-128k-sram
small-512k-sram

small-128k-ramcache
small-512k-ramcache

(b) Small file

 0

 50

 100

 150

 200

 250

 300

64 128 256 512 1024 2048 4096

Request Size (KB)

large-128k-sram
large-512k-sram

large-128k-ramcache
large-512k-ramcache

(c) Large file

Fig. 17 IOzone, single-node performance

 0

 50

 100

 150

 200

 250

 300

 350

 400

64 128 256 512 1024 2048 4096

B
an

dw
id

th
 (

M
B

/s
)

Request Size (KB)

small-sram-as
small-sram-deadline

small-ramcache
large-sram-deadline

large-ramcache

(a) direct I/O

 0

 500

 1000

 1500

 2000

 2500

64 128 256 512 1024 2048 4096

Request Size (KB)

small-sram
small-ramcache

(b) Small file

 0

 50

 100

 150

 200

 250

 300

 350

 400

64 128 256 512 1024 2048 4096

Request Size (KB)

large-sram
large-ramcache

(c) Large file

Fig. 18 IOzone, multiple-node performance

Experiment 3a: Single-node IOzone perfor-

mance
IOzone is filesystem benchmark generating a variety of
different I/O patterns. We tested its performance in

the read, re-read, and write modes. For every test, IO-
zone performs multiple passes varying the I/O size from
64KB to 4096KB. We used two different workloads. A

“small” file of 512MB which fits entirely in a node’s
cache and a “large” file of 4GB. This is to demonstrate
server and client-side cache effects. We show results
from the read tests, since the re-read case coincides with

the small file read case after the first pass, and writes
follow the same data path in both implementations.

We look into the base performance of IOzone with

a single client. Fig. 17(a) shows the performance of un-
cached (direct I/O) reads for various request sizes both
for gmblock-sram and for gmblock-ramcache. We see

that gmblock-ramcache is capped by the memory-to-
PCI bandwidth at ∼93MB/s and ∼160MB/s for the
large and small file respectively. The small file case

has considerably better performance because the first
64KB pass brings the entire file in storage server RAM.
Thus there is no disk-to-memory traffic competing with

cache-to-NIC traffic.

The gmblock-sram case scales linearly with request

size independently of file size since there is no client
or server-side caching. It is interesting to note that
gmblock-ram outperforms gmblock-sram for the initial

read of 64KB requests. This is because the caching serv-
er may prefetch aggressively: the caching server takes
advantage of readahead set at 512KB, so gmblock-sram

begins to outperform gmblock-ramcache after the 512KB
request mark and is ∼1.64 and ∼2.9 times better for the
small and large file respectively.

Fig. 17(b) shows small file performance, for reada-
head settings of 128KB and 512KB. We see client-side

caching in effect. For request sizes after 128KB, I/O
requests are being served by the page cache on the
client side, as every cluster node gets its own read lock

on the shared data and caches the file independently.
The steep drop as the request size increases is an ar-
tifact of processor cache behavior. As request size in-

creases towards 512KB, IOzone’s application buffer no
longer fits in the L2 cache of the CPU, so RAM be-
comes the target of memory copy operations when hit-

ting the local page cache. With a large enough request
size, we essentially see memory copy bandwidth limita-
tions. gmblock-sram’s behavior for the initial file read

shows that prefetching is necessary to achieve good per-

20

formance. When using the direct disk-to-NIC data path

it is not possible to prefetch on the server, but client-
initiated prefetching is still possible. The initial file read
with 512KB readahead on the client outperforms the

128KB readahead setting by as much as 120%. Thus
for all remaining experiments we continue with a reada-
head setting of 512KB on the clients.

Finally, Fig. 17(c) shows read performance for the
large file case. This time, no cache reuse is possible.

Performance of gmblock-sram with 128KB readahead
is low because the application I/O request must com-
plete fully before a new one can be issued by IOzone.

When readahead is set at 512KB the Linux I/O layer
will overlap data prefetching with page cache to appli-
cation buffer copying. The bandwidth drop after 512KB

is an artifact of L2 caching as in the small file case.

Experiment 3b: Multiple-node IOzone per-

formance
We repeat the previous experiments, this time with four
instances of IOzone running concurrently, one on each

client node. Fig 18(a) demonstrates the aggregate at-
tained bandwidth for direct I/O reads of various re-
quest sizes. All IOzone processes work on the same

512MB or 4GB file. This is the best possible scenario
for gmblock-ramcache; It has consistently good per-
formance, since it only fetches data once in memory,

then all nodes can benefit from it as they read through
the file at approximately the same rate. Achieving good
performance with gmblock-sram proved more difficult.

It quickly became apparent that the choice of the I/O
scheduler on the server was crucial. Initial testing with
the anticipatory scheduler showed poor disk efficien-

cy. The bottleneck was the storage medium serving a
seek workload. Testing with other schedulers available
in the Linux kernel (deadline, noop, CFQ; only pre-

senting results for deadline, for brevity) showed that
performance varied significantly with request size. In
the best case, I/O scheduling increases disk efficiency

enough for gmblock-sram to outperform gmblock-ram

by 66%. In the worst case, gmblock-sram only achieves
40% of gmblock-ramcache’s performance, for 64KB re-

quests and the anticipatory scheduler.

Fig. 18(b) shows small file performance. After the

initial read of the file, all clients read from the local
caches concurrently at a rate of 2.4GB/s.

Fig. 18(c) shows large file performance for 512KB
readahead. gmblock-sram consistently outperforms gm

block-ramcache, but its performance is very sensitive
to the application request size. We attribute this to
the interaction of request timing with server-side I/O

scheduling.

Experiment 3c: Server workload

We evaluate a web farm scenario, where all four clients

run scripts simulating web server instances. Each in-

stance serves randomly chosen files of fixed size from
a single directory in the shared filesystem. We use the
number of files served in a 2-minute period as a met-

ric of sustained system throughput. The file set ranges
from a small cacheable workload (70 files of 10 MBs
each), to 1000 and 10000 files of 10MBs each (Fig. 19(a)).

For the cacheable workload, there was no significant
difference in the performance of gmblock-ramcache and
gmblock-sram (results reached∼7000files/2min and are

off the chart). All clients quickly built a copy of the
workload in their page caches, so the result is domi-
nated by the memory copy rate when hitting the page

cache. gmblock-sram performs 12% and 17% better for
the 1000 and 10000-file case, respectively. It is bound
by disk performance due to small file seeks. To confirm

this, we repeat the test with the small 70-file workload,
this time reading in O DIRECT mode, to prevent any
client-side caching (bar “sram-deadline-direct-70files”

in the chart). With the disks performing seeks in a nar-
rower range, performance improved by an extra 18%
and 26% in the 1000 and 10000-case respectively.

Experiment 3c: MPI-IO Application

We use MPI-Tile-IO, an MPI-IO benchmark which pro-
duces a non-contiguous access workload similar to that
of some visualization and numerical applications. The

input file for the application is divided in a dense 2D set
of tiles, with each peer process accessing a single tile.
We perform the I/O needed to render a frame on a 4x4

tiled display, with 512x512, 1024x1024, or 4096x1024
tiles and 32 bytes per element. Total completion time
for every configuration is shown in Fig. 19(b). In the

best case, gmblock-sram delivers 39%, 51% and 57%
the completion time of gmblock-ramcache for the three
tile sizes respectively, although no I/O scheduler has

consistently better performance.
Overall, gmblock-sram performed better for all three

workloads. However, the effect of the short-circuit data

path only becomes visible when server-side I/O schedul-
ing can remove the disk bottleneck due to concurrent
access. This is why the performance increase is more

pronounced for IOzone, whose access pattern comprises
multiple peers streaming data concurrently, compared
to the server and scientific application workloads, which

lead to more frequent seeks.

8 Related work

The proposed framework for efficient remote block I/O

over Myrinet has evolved from previous design approach-
es, as has been described in more detail in Section 3.
Thus, it relates to past and ongoing research on scal-

able clustered storage, block-level storage sharing over

21

 0

 500

 1000

 1500

 2000

70 files 1000 files 10000 files

S
ys

te
m

 th
ro

ug
hp

ut
 (

fil
es

 s
er

ve
d)

Workload size in 10MB files

ramcache
sram-as

sram-deadline
sram-deadline-direct-70files

(a) Web server workload

 0

 10

 20

 30

 40

 50

 60

512x512 1024x1024 4096x1024

T
ot

al
 c

om
pl

et
io

n
tim

e

Tile size

ramcache
sram-as

sram-deadline
sram-noop

(b) MPI-Tile-I/O performance

Fig. 19 Web server workload and MPI-Tile-I/O performance

TCP/IP and user level networking architectures, and

parallel filesystems.

TCP/IP-based approaches for building nbd systems
are well-tested, widely used in production environments

and highly portable on top of different interconnec-
tion technologies, as they rely on – almost ubiquitous
– TCP/IP support. They include the Linux Network

Block Device (NBD), Red Hat’s Global NBD (GNBD)
used in conjunction with GFS [21], the Distributed RAID
Block Device (DRBD) [8] and the GPFS Network Shared

Disk (NSD) layer [24]. On the other hand, they exhibit
poor performance, need multiple copies per block be-
ing transferred, and thus lead to high CPU utilization

due to I/O load. Moreover, using TCP/IP means they
cannot access the rich semantics of modern cluster in-
terconnects and cannot exploit their advanced charac-

teristics, e.g., RDMA, since there is no easy way to
map such functions to the programming semantics of
TCP/IP. As a result, they achieve low I/O bandwidth

and incur high latency.

RDMA-based implementations [12,16,15] relieve the
CPU from network protocol processing, by using the

DMA engines and embedded microprocessors on NICs.
By removing the TCP/IP stack from the critical path,
it is possible to minimize the number of data copies re-

quired. However, they still feature an unoptimized data
path, by using intermediate data buffers held in main
memory and having block data cross the peripheral bus

twice per request. This increases contention for access
to main memory and leads to I/O operations interfering
with memory accesses by the CPUs, leading to reduced

performance for memory-intensive parallel applications.

The work in [18,17] addresses the end-to-end per-
formance of a a Linux 2.4 kernel-based block sharing

system, over a custom 10Gbps RDMA-capable inter-

connect with exclusive access. The authors show that

network and disk interrupt processing overhead can have
major impact on the attainable performance and focus
on I/O protocol optimizations in order to alleviate it.

We evaluate the effect of different I/O paths on stor-
age server performance and focus on integration in an
existing HPC infrastructure: gmblock is implemented

in userspace, to simplify its design and be able to ac-
cess structured storage (e.g., data in a filesystem) using
kernel-provided abstractions. The proposed modifica-

tions follow Myrinet/GM semantics, preserve memory
protection and can co-exist with communicating appli-
cations running on the same cluster node.

Our framework is not the only one to support di-

rect paths between storage media and the network; a
number of network block sharing systems have been
described in the literature supporting block transfers

from the disk to the NIC. However, they impose limita-
tions which can hinder their applicability in real-world
scenarios.

The DREAD project [7] describes a mechanism of
controlling SCSI storage devices over SCI-provided re-

mote memory accesses to their PCI memory-mapped
I/O space; in this setup, the SCSI controller driver runs
on the client. However, only a single remote node may

be running the driver and accessing the SCSI adapter,
hence no data sharing between multiple clients is possi-
ble. Also, the system needs source code changes to the

SCSI driver so that it performs I/O over SCI-mapped
memory. This approach has significant interrupt over-
head; interrupts are routed via the server CPU, causing

a network transaction and an interrupt on the client,
which is caught by DREAD and routed to the SCSI
driver. Thus, it does not scale well as the I/O rate in-

creases. Finally, there is little room for client- or server-

22

side optimizations to the protocol, since it works at a

very low level directly between the SCSI driver and the
device, as if they were directly connected over the PCI
bus.

The work on Proboscis [10,11] implements a block-

level data sharing system over SCI. It builds on the idea
of having nodes act as both compute and storage servers
and describes a kernel-based system for exporting block

devices. It also mentions the possibility of direct disk-
to-NIC transfers, by exploiting hardware support spe-
cific to SCI for mapping remote memory to a node’s

physical address space. This reduces host overhead sig-
nificantly, but may lead to problems: first, it would on-
ly make sense for disk read operations (remote memory
writes), since the overhead of remote reads over SCI is

prohibitive; second, there is a low limit on the num-
ber of SCI memory mappings that may be active at
any time, which would interfere with processes trying

to make concurrent use of the interconnect – a prob-
lem analogous to Myrinet’s limited amount of SRAM
on the NIC; third, referring to SCI-mapped addresses

directly makes error handling in case of network fail-
ures very complicated, as there is no way for the stor-
age device to be notified whenever a memory access

operation to a physically mapped remote location fails;
and finally, there is no provision for coherence with the
local OS’s page cache. Our framework proposes syn-

chronized sends to work around the limited amount of
SRAM on the Myrinet NIC and avoids the problem of
error handling by isolating network I/O in a distinct

SRAM-to-wire or wire-to-SRAM phase.

The work on Off-Processor I/O with Myrinet (OPI-
OM) [9] was the first Myrinet-based implementation
of direct data transfers from a local storage medium to

the NIC. At the server side, OPIOM performs read-only
direct disk-to-Myrinet transfers, bypassing the memo-
ry bus and the CPU. However, to achieve this, OPIOM

makes extensive modifications to the SCSI stack inside
the Linux kernel, in order to intercept block read re-
quests so that the data end up not in RAM but in Lanai

memory. This has a number of significant drawbacks:
first, since the OPIOM server uses low-level OPIOM-
specific SCSI calls to make such transfers, it can on-

ly be used with a single SCSI disk. Moreover, there is
no provision for concurrent accesses to the SCSI disk,
both over Myrinet and via the page cache, thus no write

support is possible, since there is no way to invalidate
blocks which have already been cached in main memory,
when a remote node modifies them. Even for the read

case, it is unclear what would happen if a remote node
requested data recently changed by a local process, still
kept in the page cache but not yet flushed to disk. Our

proposed framework is able to ensure coherence with

the page cache, both for reads and for writes by ex-

ploiting the direct-I/O semantics of the Linux 2.6 ker-
nel; it will invalidate cached blocks before an O DIRECT

write and will write back any relevant cached pages to

disk before an O DIRECT read. By integrating parts on
Lanai SRAM into the VM infrastructure provided by
Linux and using O DIRECT-type transfers, gmblock is

disk-type agnostic and can construct an efficient disk-
to-network path regardless of the underlying storage
infrastructure, whether it is a SATA disk, storage ac-

cessible over Fibre-Channel or even a software RAID0
device. The only requirement is that a Linux driver ca-
pable of using DMA to service O DIRECT transfers is

available.

A different approach for bringing storage media clos-
er to the cluster interconnect is READ2 [5]. In READ2,
the whole of the storage controller driver resides on the

Lanai processor itself, rather than in the Linux kernel.
Whenever a request arrives from the network, it is pro-
cessed by the Lanai, which is responsible for driving

the storage hardware directly, thus bypassing the host
CPU. However, removing the host CPU (and thus the
Linux kernel executing on top of it) from the process-

ing loop completely, limits the applicability of this ap-
proach to real-world scenarios for a number of reasons.
First, it disregards all the work devoted to developing

stable in-kernel block device drivers; every device driv-
er needs to be rewritten without any of the hardware
abstraction layers of the Linux kernel. Second, there is

no coordination with the host system, so the disk being
shared is inaccessible by local kernel drivers. As a re-
sult, no enforcement of per-user rights and no process

isolation is possible. Finally, even for short commands
to the storage controller, the Lanai cannot do PIO, but
is instead forced to setup DMA transactions from and

to the controller’s I/O space. Thus, the latency of con-
trol operations becomes very high.

9 Conclusions and Future Work

We have described the design and implementation of
gmblock, a framework for direct device-to-device data

movement in commodity storage servers. Our prototype
implementation over Myrinet supports direct I/O paths
between the storage subsystem and the Myrinet NIC,

bypassing the host CPU and memory hierarchy com-
pletely. The system combines the user level networking
features of Myrinet/GM with enhancements in Linux’s

VM mechanism to build the proposed data path. Its
operation is block device driver agnostic and preserves
the isolation and memory protection semantics of the

host OS. On the client side, gmblock supports scatter-

23

gather I/O, allowing end-to-end zero-copy block trans-

fers, from remote storage to user memory.

Experimental evaluation of different I/O paths on

our prototype system has revealed the following: (a) Re-
source contention on the I/O path can lead to signifi-
cant performance degradation. Moving block data in a

direct disk-to-NIC path eliminates memory and periph-
eral bus contention, leading to significant performance
improvements, in the range of 20-200% in terms of sus-

tained remote read bandwidth, depending on the stor-
age server’s architectural characteristics, (b) Staging
data in main memory interferes with computationally

intensive tasks executing on the local CPU, causing up
to 67% execution slowdown. The proposed techniques
alleviate the problem, by increasing the availability of

the main memory bus to the host CPUs, (c) The perfor-
mance of the optimized data path depends on support
for efficient peer-to-peer transfers by various hardware

components, most notably peripheral bus bridges. The
system proved flexible enough to support alternate data
paths, when the hardware did not have adequate sup-

port for the needed functionality, (d) The data move-
ment characteristics of RAID-based storage subsystems
combined with limited memory on the Myrinet NIC re-

duce remote I/O performance, even when using an op-
timized data path.

To work around these limitations, we have proposed
enhancements to the semantics of network send oper-
ations, so that the NIC supports synchronization with

external agents doing peer-to-peer transfers over the pe-
ripheral bus. To support multiple incoming data streams
from RAID storage, we enhanced the Myrinet network

protocol so that it supports out-of-order fragment de-
livery into message buffers.

We have deployed the OCFS2 shared-disk filesystem
on a distributed setup on top of gmblock and evaluated
its performance with a variety of workloads. We see that

the applications generally have performance gains due
to increased remote I/O bandwidth, although results
are very sensitive to application I/O patterns. Efficient

server-side I/O scheduling is needed, to eliminate the
disk bottleneck due to concurrent usage.

We believe gmblock’s approach is generic enough to
be applicable to different types of devices. An example

would be a system for direct streaming of data coming
from a video grabber to structured, filesystem based
storage. Moreover our approach lends itself to resource

virtualization: each user may make use of the optimized
data path while sharing access to the NIC or other I/O
device with other users transparently.

Although the current implementation is Myrinet-
based, we plan to explore porting the design to oth-

er interconnects, such as Infiniband. Essentially, the

server-side data path requires a DMA-enabled network

interface with a small, fast, PCI-addressable memory
area close to it. Our approach may be applicable to In-
finiband, given hardware modifications to include the

needed memory space. Next, the relevant areas would
be registered to partake in RDMA operations. We can
emulate this configuration using a programmable I/O

adapter like the Cyclone NIC, between the PCI inter-
face and the Infiniband NIC. On the client side, we ex-
tend the GM firmware to offload block device function-

ality to the NIC and support scatter-gather I/O directly
to/from the physical address space. This optimization is
not possible with current non-programmable Infiniband

NICs. Instead, RDMA can be used for scatter-gather,
with the added cost of memory registration.

We also plan to port our system to high-end PCI

Express-based systems, using multiple Myri-10G NICs,
in order to explore the efficiency of peer-to-peer trans-
fers over PCI-E switch chips. We expect the effects of
resource contention on the I/O path to be even more

pronounced in such setup, given the network’s 10Gbps
transfer rate.

References

1. I. T. Association. InfiniBand Architecture Specification, Re-
lease 1.0, 2000. http://www.infinibandta.org/specs.

2. R. A. F. Bhoedjang, T. Rühl, and H. E. Bal. User-Level

Network Interface Protocols. Computer, 31:53–60, 1998.
3. J. G. Blas, F. Isaila, J. Carretero, and rossemann Thomas.

Implementation and Evaluation of an MPI-IO Interface for
GPFS in ROMIO. In Proceedings of the 15th EuroPVM/MPI

2008 Conference, Dublin, Ireland.
4. N. J. Boden, D. Cohen, R. E. Felderman, A. E. Kulawik,

C. L. Seitz, J. N. Seizovic, and W. Su. Myrinet: A Gigabit-
per-Second Local Area Network. IEEE Micro, 15(1):29–36,

Feb 1995.
5. O. Cozette, C. Randriamaro, and G. Utard. READ2: Put

Disks at Network Level. In CCGRID’03, Workshop on Par-
allel I/O, Tokyo (Japan), May 2003.

6. Cyclone. PCI-X 740 Intelligent Du-

al Gigabit Ethernet Controller Datasheet.
http://www.cyclone.com/pdf/PCIX740.pdf.

7. M. B. Dydensborg. Direct Remote Access to Devices. In
Proceedings of the Fourth European Research Seminar on

Advanced Distributed Systems, May 2001.
8. L. Ellenberg. DRBD 8.0.x and beyond: Shared-Disk Seman-

tics on a Shared-Nothing Cluster. In LinuxConf Europe 2007,
Cambridge, England, Sept. 2007.

9. P. Geoffray. OPIOM: Off-Processor I/O with Myrinet. Fu-

ture Gener. Comput. Syst., 18(4):491–499, 2002.
10. J. S. Hansen. Flexible Network Attached Storage using

RDMA. In Proceedings of the 9th IEEE Symposium on High-
Performance Interconnects, 2001.

11. J. S. Hansen and R. Lachaise. Using Idle Disks in a Cluster

as a High-Performance Storage System. In Proceedings of
the IEEE International Conference on Cluster Computing,
2002.

12. K. Kim, J.-S. Kim, and S.-I. Jung. GNBD/VIA: A Network

Block Device over Virtual Interface Architecture on Linux.

24

In Proc. of the 14th International Parallel and Distributed
Processing Symposium (IPDPS), 2002.

13. E. Koukis and N. Koziris. Memory and Network Bandwidth
Aware Scheduling of Multiprogrammed Workloads on Clus-
ters of SMPs. In ICPADS ’06: Proceedings of the 12th In-

ternational Conference on Parallel and Distributed Systems,
pages 345–354, Washington, DC, USA, 2006. IEEE Comput-
er Society.

14. T. Lahiri, V. Srihari, W. Chan, N. MacNaughton, and

S. Chandrasekaran. Cache Fusion: Extending Shared-Disk
Clusters with Shared Caches. In VLDB ’01: Proceedings
of the 27th International Conference on Very Large Data
Bases, pages 683–686, San Francisco, CA, USA, 2001. Mor-

gan Kaufmann Publishers Inc.
15. S. Liang, W. Yu, and D. K. Panda. High Performance Block

I/O for Global File System (GFS) with Infiniband RDMA.
In ICPP ’06: Proceedings of the 2006 International Con-

ference on Parallel Processing, pages 391–398, Washington,
DC, USA, 2006. IEEE Computer Society.

16. J. Liu, D. K. Panda, and M. Banikazemi. Evaluating the

Impact of RDMA on Storage I/O over Infiniband. In SAN-
03 Workshop (in conjunction with HPCA), 2004.

17. M. Marazakis, V. Papaefstathiou, and A. Bilas. Optimiza-
tion and Bottleneck Analysis of Network Block I/O in Com-

modity Storage Systems. In ICS ’07: Proceedings of the 21st
Annual International Conference on Supercomputing, pages
33–42, New York, NY, USA, 2007. ACM.

18. M. Marazakis, K. Xinidis, V. Papaefstathiou, and A. Bi-

las. Efficient Remote Block-level I/O over an RDMA-capable
NIC. In ICS ’06: Proceedings of the 20th annual internation-
al conference on Supercomputing, pages 97–106, New York,
NY, USA, 2006. ACM.

19. W. D. Norcott and D. Capps. IOzone Filesystem Benchmark.
http://www.iozone.org/docs/IOzone msword 98.pdf.

20. F. Petrini, W. chun Feng, A. Hoisie, S. Coll, and E. Frachten-
berg. Quadrics Network (QsNet): High-Performance Cluster-

ing Technology. In Hot Interconnects 9, Stanford University,
Palo Alto, CA, August 2001.

21. K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Erickson,

E. Nygaard, C. J. Sabol, S. R. Soltis, D. C. Teigland, and
M. T. O’Keefe. A 64-bit, Shared Disk File System for Linux.
In Proceedings of the Seventh NASA Goddard Conference on
Mass Storage Systems, pages 22–41, San Diego, CA, 1999.

22. J.-P. Prost, R. Treumann, R. Hedges, B. Jia, and A. Koniges.
MPI-IO/GPFS, An Optimized Implementation of MPI-IO
on top of GPFS. In Proceedings of the 2001 ACM/IEEE
conference on Supercomputing, pages 17–17, New York, NY,

USA, 2001. ACM.
23. R. Ross. Parallel I/O Benchmarking Consortium.

http://www.mcs.anl.gov/research/projects/pio-benchmark.
24. F. Schmuck and R. Haskin. GPFS: A Shared-Disk File

System for Large Computing Clusters. In Proc. of the First
Conference on File and Storage Technologies (FAST), pages
231–244, Jan. 2002.

25. S. R. Soltis, T. M. Ruwart, and M. T. O’Keefe. The Glob-

al File System. In Proceedings of the Fifth NASA Goddard
Conference on Mass Storage Systems, pages 319–342, Col-
lege Park, MD, 1996. IEEE Computer Society Press.

	Introduction
	Background
	Design of gmblock
	Implementation details
	Experimental evaluation
	Synchronized GM send operations
	Parallel filesystem deployment over gmblock
	Related work
	Conclusions and Future Work

