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Abstract

Clusters of SMPs are becoming increasingly common.
However, the shared memory design of SMPs and the conse-
quential contention between system processors for access to
main memory can limit their efficiency significantly. More-
over, the continuous improvement of modern cluster inter-
connection technologies leads to the network bandwidth be-
ing a significant fraction of the total memory bandwidth
of the machine, thus the NIC of an SMP cluster node can
also become a major consumer of shared memory bus band-
width. In this paper we first provide experimental evidence
that contention on the shared memory bus can have major
impact on the total execution time of processes even when
no processor sharing is involved, then present the design
and implementation of an informed scheduling algorithm
for multiprogrammed workloads, which tries to carefully se-
lect processes to be co-scheduled so that bus saturation is
avoided. The input data needed by our scheduler are ac-
quired dynamically, at run-time, using architecture-specific
performance monitoring counters and a modified version of
the NIC firmware, with no changes to existing application
binaries. Experimental comparison between our scheduler
and the standard Linux 2.6 O(1) scheduler shows average
system throughput improvements in the range of 5-25%.

1. Introduction

Symmetric multiprocessors, or SMPs for short, have
emerged as a cost-effective solution for parallel standalone
servers or as building blocks for scalable clustered systems,
when interconnected over a low-latency networking infras-
tructure. However, they have a fundamental architectural
bottleneck, that hinders their ability to scale to large num-
bers of processors, namely their shared memory bus.

The most important feature of an SMP architecture is
the sharing of all of main memory over a shared memory
bus or other internal interconnection network, with the ac-
cess latency to all memory locations being the same for ev-
ery processor in it. This simplifies the process of program-
ming the system, enabling the use of a shared address space
with uniform access cost. On the other hand, the existence
of a shared memory bus is also the most important barrier
to system scalability.

Researchers have focused for long on the imbalance be-
tween the increase in CPU speed versus the increase in
memory speed in modern systems. As the CPU speed of the
fastest available microprocessors increases exponentially, at
a rate of about 80% per year while the speed of memory de-
vices is growing at a much slower rate of about 7% per year
[17], the ratio of CPU to memory performance, or ”Machine
Balance” [15] becomes a deciding factor to determining
overall system performance. Memory performance is de-
fined not only in terms of available bandwidth but of mem-
ory latency as well. Pipeline stalls, because the required data
is not yet available due to memory latency, impose a ma-
jor performance hit in modern pipelined processors. To al-
leviate the latency problem and exploit temporal and spa-
tial locality, processors in an SMP system do not communi-
cate with main memory directly, but rather through a pri-
vate hierarchy of caches, loading and storing cache line
sized blocks. Using large caches and memory latency toler-
ance techniques, such as prefetching and speculative loads
may hide latency but leads to higher bandwidth consump-
tion [6]. There is a latency-bandwidth tradeoff, since much
more data are transferred from main memory to the proces-
sor that are actually going to be used, in order to minimize
access latency. However, without sufficient bandwidth, la-
tency tolerance techniques become ineffective.

The limited memory bus bandwidth problem in SMPs
is aggravated when SMP systems are combined to form
large, distributed memory clustered systems. Cluster nodes
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are commonly interconnected over advanced, high perfor-
mance interconnection networks such as Myrinet [5] or SCI
[9, 8] Their NICs feature embedded microprocessors and
DMA engines, in order to offload the communication load
from the CPUs and allow them to perform useful process-
ing while they undertake moving messages directly to and
from system memory. However, as their available commu-
nication bandwidth is constantly increasing, in the order of
Gbps, so does their memory bus bandwidth consumption
relative to the CPUs of the system. This affects the degree
of computation-to-communication overlapping that can be
achieved and limits overall application performance.

Most software for SMPs does not address the prob-
lem of limited memory bandwidth directly, rather it tries
to minimize its effect by exploiting the cache hierarchy.
On one hand, there are efforts [1, 20, 21] to make bet-
ter use of available caches by employing sub-blocking and
partitioning techniques, in order to improve the locality
of references and minimize the cache miss rate. On the
other hand, scheduling in SMP enabled Operating Sys-
tems takes into account CPU affinity constraints [23, 22,
19], by heavily penalizing inter-processor migrations when
context-switching: a process migrating to a different CPU in
the system would have to rebuild its state information in the
new processor’s private cache hierarchy. Thus it would ex-
hibit a high cache miss ratio and increase the load on the
shared memory bus. However, the problem still remains,
if after applying these optimizations the available memory
bandwidth does not suffice.

In this paper, we try to address the problem directly, by
carefully selecting the processes that are assigned to proces-
sors and executed in parallel, so as to minimize their inter-
ference on the memory bus. We assume a multiprogrammed
SMP cluster node, on which the memory bandwidth con-
sumption of each process is a function not only of the cache
miss ratio of its code executing on the CPU, but of its com-
munication load as well. Thus, we account for the memory
bandwidth consumption by the DMA engines on the cluster
interconnect NIC, which are programmed directly by pro-
cesses under a User Level Networking scheme.

Our goal is to monitor the memory bandwidth consump-
tion of each process at run-time and use this information to
assign processes to processors in such way, so as to neither
saturate nor underutilize the shared memory bus. The sched-
uler is designed so that no code changes to executing appli-
cations are necessary. Monitoring data used by the sched-
uler are gathered transparently to application code. Mem-
ory bandwidth consumption by the CPU is monitored by ex-
ploiting the performance counters provided by most modern
microprocessors [24], while memory bandwidth consump-
tion by the DMA engines on the NIC is monitored by ex-
tending the firmware executing on it to support such func-
tionality.

The effect of limited memory bandwidth on process ex-
ecution in the context of soft- and hard- realtime systems
has been investigated in [13] and in [4], where techniques
are presented to satisfy guaranteed memory bandwidth de-
mands and to throttle lower priority processes so that they
do not interfere with the execution of higher priority ones.
Our work also focuses on the effect of interference on the
shared memory bus, however we seek to increase system
throughput in multiprogrammed nodes, rather than meet
strict deadlines.

The work in [3] is similar to ours, describing a system
which uses source code changes to track the memory band-
width usage of each application and coordinate their exe-
cution. Our approach is based on a monitoring framework
which requires no application source code changes, but in-
stead relies on OS and NIC firmware mechanisms in order
to transparently monitor memory bandwidth usage. Further-
more, we try to monitor and take into account the pressure
on the memory bus imposed by the NIC, when executing
communication intensive applications.

In the rest of this paper, we first demonstrate the prob-
lem imposed by memory bus saturation by measuring the
execution slowdown imposed on mixed benchmark work-
loads (Section 2), then based on our observations, propose
memory bandwidth aware scheduling policies to alleviate it
(Section 3). Section 4 describes the performance monitor-
ing framework we designed, both at the CPU as well as at
the NIC firmware side and the actual scheduler implemen-
tation. Finally we present an experimental evaluation of our
scheduling policy compared to the standard Linux sched-
uler (Section 5) and our conclusions (Section 6).

2. Application slowdown due to memory bus
saturation

In this section, we demonstrate the impact of memory
bus saturation on overall system performance by quantify-
ing the slowdown imposed on the execution of computa-
tionally intensive workloads. We take special care to ensure
that the processes being executed do not share processor
time or other system resources, and only contend for mem-
ory bus bandwidth. For benchmarking, we used the bzip2,
gzip and crafty applications from the SPEC CPU2000
benchmark suite [10], the BLAST application for search-
ing protein and nucleotide databases [2] and the queens
computational kernel. We also developed two microbench-
marks, membench and myribench which are used to
evaluate the impact of memory bus consumption by the
CPU and the NIC respectively.

Our experimental platform is an SMP cluster node with
two Pentium III@1266MHz processors, based on the Su-
permicro P3TDE6 motherboard (Serverworks ServerSet III
HC-SL chipset). The chipset allows for dual channel ac-
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cess to the two PC133 SDRAM 512MB DIMMs that are
used, for a total of 1GB shared main memory. Each of the
processors has a 16KB L1 Instruction Cache, a 16KB L1
Data Cache and a 512KB unified L2 Cache, with 32 bytes
per cache line. For cluster interconnection, a Myrinet M3F-
PCI64B-2 NIC is installed. It uses the LANai9 embedded
microprocessor clocked at 133MHz, and 2MB of SRAM.
The NIC is installed in a 64bit/66MHz PCI slot, which has
a theoretical peak bandwidth of 528MB/s.

The system runs the Linux 2.6.6 kernel. We de-
cided to use a 2.6 kernel version mainly for its use of a
new enterprise-class O(1) scheduler, which has been com-
pletely rewritten since 2.4, with cache affinity and SMP
scalability in mind. All benchmarks were compiled with
the GCC v3.3.3 compiler, with maximum optimiza-
tion (-O3 -fomit-frame-pointers). To estimate
memory bandwidth consumption we used the perfctr li-
brary for manipulation of the CPU performance counters,
as described in greater detail in Section 4.
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Figure 1. Application slowdown due to lim-
ited memory bandwidth

We ran six different sets of experiments (fig. 1). First,
for each benchmark, we ran a single process of the appli-
cation on one of the two processors. In this case the pro-
cess runs with negligible interference from other processes,
being the only runnable process in the system. Thus we can
have a good estimate on the memory bandwidth it consumes
on average, as depicted in table 1.

To isolate the work done in the CPU and the mem-
ory subsystem, and ensure that the processes remain purely
computationally intensive and never leave the CPU to wait
on disk I/O, we made sure that all data exchange from and
to input and output files took place on an in-memory file

Benchmark Description BW req.
bzip2 Compression tool 460MB/s
queens N-Queens solver 452MB/s
BLAST Protein sequence search 95MB/s
gzip Compression tool 45MB/s
crafty Chess engine 21MB/s

Table 1. Description of benchmarks used

system.
Along the application benchmarks, we also use the

membench microbenchmark, to estimate memory bus
bandwidth using strided array accesses. It allocates a block
of B words, which is then accessed multiple times in an un-
rolled loop. If the access stride is s, then only words with in-
dices s, 1s, 2s, . . . are references. By manipulating s it
is possible to change the cache hit ratio of the bench-
mark. If L is the cache line size in words, then we can
have two extremes: If s = 1, then when the first word
of a cache line is first referenced a cache miss will oc-
cur, the line will be transferred into the cache and all L − 1
remaining accesses will be cache hits. In this case our mi-
crobenchmark exhibits excellent locality of reference.
If s = L, then all accesses made by the microbench-
mark will reference a different cache line. If B is much
larger than the size of the L2 cache, we ensure that code ex-
ecution causes back-to-back transfers of whole cache lines
from main memory.

The first set of experiments shows that our benchmarks
have quite diverse demands for memory bus bandwidth de-
mands. Two of them, bzip2 and queens pose heavy load
on the memory subsystem, in the order of 400-500MB/s.
This is attributed to bzip2 performing indexed array ac-
cesses in a large working space of about 8MB, much larger
than our L2 cache. queens, on the other hand, employs
random hill climbing to solve the N-Queens problem for
106 queens, using a linked list representation for the search
space. Thus, it performs mainly irregular pointer-chasing
memory accesses. The BLAST benchmark has medium
bandwidth requirements, while gzip and crafty are in
the lower end, needing no more than 20-50MB/s on our
platform.

Running membench with s = L reports that the peak
memory bus bandwidth on our platform is 981MB/s, a re-
sult which was verified by the STREAM memory bench-
mark [14]. Thus, running an application other than
membench using only one process does not lead to mem-
ory bus saturation.

For the second set of experiments, we ran two processes
of each benchmark in parallel. The number of runnable pro-
cesses does not exceed the number of available processors,
so there is no processor sharing involved. However, we can
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see that the two memory-intensive benchmarks,bzip2 and
queens suffer a major performance hit, in the order of 45-
55%, with the performance hit decreasing according to the
memory bandwidth requirements of each benchmark. This
performance degradation is the result of interference be-
tween the processes, because of contention on the shared
memory bus.

The third set of experiments involves running a bench-
mark process in parallel with a membench process, in or-
der to push the memory bus to saturation and pronounce
the effect of the memory bottleneck. The execution re-
sults are also indicative of the performance the applications
would exhibit on a 4-way SMP system, where it would be
much easier to saturate the memory bus. Again, bzip2
and queens slow down considerably, 74.2% and 69.5%
respectively, but this time BLAST and gzip are also af-
fected, running 7.7% and 7.9% slower. On the other hand,
crafty, which has very low memory bandwidth demands, is
not affected significantly, with a slowdown of only 1.5%.

For the final sets of experiments, we repeated the three
previous measurements. This time however, the firmware on
the Myrinet NIC was programmed to perform packet trans-
mission and reception from and to main memory while the
workloads were executing, in order to demonstrate that the
NIC of a modern cluster interconnect can also be a major
memory bus bandwidth consumer and quantify the effect
of overlapping computation with communication to over-
all system performance. This does not impact the CPU time
that is available to the workload, since all memory accesses
are coordinated by the firmware executing on the LANai
and performed using DMA engines on the NIC.

The results of the experiments involving network traf-
fic show that network traffic can limit significantly the
bandwidth that is available to the CPUs. For bzip2 and
queens, the performance degradation when one process
executes in the presence of network traffic (34-36%) is com-
parable to the slowdown imposed by two concurrently ex-
ecuting processes. In the last set of experiments, when one
benchmark process contends for access to memory with an
instance of membench and the NIC, the impact of mem-
ory bus saturation ranges from a 5.5% slowdown for crafty,
to a 230% slowdown for bzip2.

We should also note that performance degrades even
when the cumulative bandwidth demand of both CPUs
and the NIC does not exceed 981Mb/s, the peak band-
width of our memory bus (for example, when two in-
stances of queens execute in parallel). To better demon-
strate this, we have plotted in fig. 2 the bandwidth con-
sumption of two instances of membench executing con-
currently, as well as their cumulative bandwidth usage. The
first instance issues memory operations at the highest pos-
sible rate, which the second thread is throttled by inserting
exponentially-distributed idle periods between consecutive
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Figure 2. Memory contention and bus arbitra-
tion overhead

block accesses. We notice that as the demands of the sec-
ond process increase, the cumulative bandwidth decreases
disproportionately. This indicates that the effective memory
bandwidth can become substantially smaller than its peak
value, most probably due to the overhead of bus arbitration.

3. Memory bandwidth aware scheduling poli-
cies

Motivated by these observations of the slowdown im-
posed by contention on the shared memory bus, we design
a new scheduling policy that aims at maximizing through-
put when executing computationally intensive workloads
by making more efficient use of the available memory bus
bandwidth.

The experimental results presented in the previous sec-
tion indicate that it is the applications with high mem-
ory bandwidth requirements (bzip2 and queens) that
are affected the most when competing for bandwidth on
the shared memory bus. On the other hand, applications
which have low cache miss rates (gzip, crafty) are
largely unaffected by bus contention. However, generic op-
erating system schedulers, such as the O(1) scheduler in-
cluded in current Linux 2.6 kernels, aim at maximizing pro-
cessor utilization and minimizing response time for inter-
active applications, without taking into account the effects
of contention on the memory bus. Thus it makes sense, in
the context of multiprogrammed SMP cluster nodes exe-
cuting computationally intensive workloads, to employ a
scheduling policy which tries to avoid memory bus satura-
tion by carefully selecting processes to be co-scheduled on
the available processors. This way serialization on the mem-
ory bus is avoided and a high degree of parallelism can be
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sustained, reducing the total execution time of applications
and increasing system throughput.

Our algorithm accepts as input a set of n applications
(tasks, jobs) to be scheduled. Each application comprises a
set of related processes, with pi being the number of pro-
cesses belonging to the i-th application, 0 ≤ i ≤ n. A pro-
cess is the schedulable entity, as seen from the point of view
of the underlying operating system, e.g. the Linux kernel.
Often an application executes on only one process. How-
ever, especially in the case of MPI jobs executing on a clus-
ter of SMPs, it is possible that an application executes on
more than one processes, in order to take advantage of more
than one CPUs. These processes usually perform intra-node
communication via shared memory areas, obtained using
System V IPC mechanisms. In the context of fine-grained
parallel applications, it is important that related processes
are scheduled to execute simultaneously (“gang schedul-
ing”, [7, 11, 12]), so as to reduce the context switching over-
head, minimize synchronization latencies and ensure that
the parallel job makes sufficient progress. This is taken into
account by our scheduling policy, which makes sure that
the required number of processors is available for all re-
lated processes of an application to execute concurrently, if
this application is to be scheduled on the next time quan-
tum.

A real-time monitoring framework is assumed, that al-
lows the algorithm to sample, for the j-th process of ap-
plication i, the memory bandwidth BWC

ij consumed by the
process code executing on a CPU as well as the bandwidth
BWN

ij consumed by the NIC(s) on which the process has
open ports.

The generic form of the scheduling algorithm is pre-
sented in algorithms 1, 2. The applications are organized
in a doubly linked list. The algorithm runs once before ev-
ery time quantum of length q and decides on the processes
that will be executed on all processors of the system for its
duration, thus all CPUs context switch simultaneously.

First, the scheduler makes sure that all processes exe-
cuting in the previous time quantum are stopped, then uses
the performance monitoring framework to collect statistical
data on their memory bandwidth consumption. This infor-
mation is used as input to a heuristic, which allocates the P
CPUs in the system to applications, by selecting the mem-
bers of the set of applications which will run in the next time
quantum. Initially, the set of applications to be co-scheduled
is empty. The first application on the list is always added to
it, in order to prevent processor starvation and ensure that
every process will eventually get scheduled to execute. In
the sequel, the heuristic continues selecting applications and
adding them to the set, keeping count of the yet un-allocated
processors and the remaining memory bus bandwidth (ini-
tially M ), as each application that is added to the set con-
sumes a portion of the available memory bandwidth. The ef-

Algorithm 1: reschedule

begin1

while the list of applications is not empty do2

stop all previously executing processes3

sample the performance monitoring counters4

select a new set of apps to be scheduled5

set a timer to expire after tq seconds6

foreach application i do7

if selected to runi do8

foreach process j of application i do9

signal proc. j to begin execution10

end foreach11

end if12

end foreach13

end while14

end15

fect of memory bus contention presented in fig. 2 must be
taken into account when determining M .

Since it is impossible to know the memory bandwidth
demands of an application beforehand, a prediction is made
based on the bandwidth consumption of its processes during
the w previous time quanta. We use the notation BWN,−k

ij

to denote the memory bus bandwidth consumed by the NIC
on behalf of process j of application i in the k-th previ-
ous time quantum. The run-time parameter w defines a slid-
ing window over which the memory access rate of every
process is averaged. The choice of w could affect the ef-
ficiency of our scheduler: It needs to be large enough to
smooth out short bursts of memory activity, while at the
same time being small enough for our scheduler to be able
to adapt quickly to changes in the memory behaviour of pro-
cesses.

In order to select the next application to be added to
the set, an “inverse fitness” value is computed for all jobs
not yet in the set. The heuristic divides the available mem-
ory bandwidth among the yet un-allocated processors
(BWrem/prem) and then selects the application whose av-
erage memory bandwidth consumption per process best
matches that:

inv fitness(i) =

=

∣∣∣∣∣
1
w

1
pi

w∑
k=1

pi∑
i=1

(
BWC,−k

ij + BWN,−k
ij

)
− BWrem

prem

∣∣∣∣∣

The use of this metric favors co-scheduling jobs with
high bandwidth demands along with jobs that do not con-
sume a lot of memory bandwidth. Once demanding applica-
tions have been selected, the ratio BWrem/prem becomes
very low, so jobs with low demands are more likely to be se-
lected next. The inverse also holds.
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Algorithm 2: select applications for next tq

begin1

foreach application i in list do2

selected to runi ←− false3

end foreach4

/* The first application always gets scheduled */5

selected to run0 ←− true
prem ←− P − p06

BWrem ←− M − BW07

while prem > 0 do8

bestfi ←− +∞9

bestapp ←− −110

foreach application i in list do11

fi ←− inv fitness(i, prem, BWrem)12

if pi ≤ prem ∧ fi < bestfi do13

bestfi ←− fi14

bestapp ←− i15

end if16

end foreach17

selected to runbestapp ←− true18

move bestapp at end of list19

prem ←− prem − pbestapp20

BWrem ←− BWrem − BWbestapp21

end while22

end23

4. Scheduler implementation details

The scheduling policy described in the previous section
is well suited to an implementation in userspace, according
to which scheduling decisions are taken by a process run-
ning with escalated privileges, and the signaling mechanism
provided by the underlying OS is used to pause and resume
the execution of processes being managed. The userspace
scheduler ensures that the number of runnable processes
never exceeds the number of CPUs, so that no context-
switching is done by the OS kernelspace scheduler and there
is no time-sharing involved.

The main advantage of this approach is that a userspace
implementation is much simpler than one in kernelspace.
Moreover, while the kernel views and schedules processes
independently of each other, a userspace scheduler can
be much better informed on higher-level semantic rela-
tionships between processes, taking into account, for ex-
ample, that certain processes all belong to the same MPI
job. The biggest drawback of such implementation is that
there is not a simple mechanism for the userspace sched-
uler to be notified when the processes being managed leave
the CPU and block on I/O. In this case the CPU is left
idle, while a kernel scheduler would context-switch to a
different runnable process. However, in our case we are
concerned with computationally intensive workloads and

computation-to-communication overlapping, meaning that
processes do not block on I/O.

This section describes a userspace implementation of
our scheduling policy, the MEMory Bandwidth aware
Userspace Scheduler (MemBUS). MemBUS runs as a priv-
ileged process, so as to be able to create processes be-
longing to different users, and listens for job creation
requests at a UNIX domain socket. Whenever a new re-
quest is received, it creates the needed processes and
attaches to them using the ptrace system call. This al-
lows MemBUS to control a process completely, creating
and sampling virtual performance counters connected to it,
and also monitoring the signals it receives. During its op-
eration, at each time quantum, MemBUS samples its input
data, then uses the standard SIGSTOP and SIGCONT sig-
nals to perform the context switch.

4.1. Monitoring CPU memory bandwidth con-
sumption

Since CPUs in SMPs do not communicate with main
memory directly but rather through a multi-level hierarchy
of cache memories, estimating the memory bandwidth con-
sumption of a CPU essentially means being able to monitor
the bus ransactions used to load and store cache lines to and
from the highest level cache, that is closest to main mem-
ory.

To monitor the memory behavior of applications with-
out needing any modifications to their source code, we de-
cided to use the performance monitoring feature, as pro-
vided by most modern microprocessors in the form of per-
formance monitoring counters. These are machine-specific
registers which can be assigned to monitor specific events,
usually through the use of privileged instructions (RDMSR
and WRMSR in the case of the x86 architecture). The coun-
ters may track the frequency or duration of events taking
place in various functional units of the processsor, such as
the number of floating-point instructions executed, or the
number of branch mispredictions. In our case, we are inter-
ested in monitoring the Data Cache Unit, and more specifi-
cally the number of bus transactions to transfer whole cache
lines between the main memory and the L2 cache (cache fill
or writeback operations).

There are two obstacles for performance monitoring
counters to be used effectively by MemBUS. First, the per-
formance counter manipulation are usually privileged and
can only be issued from kernelspace. Second, they are a
per CPU, not a per process resource. If we are to count bus
transactions and other events individually per process, i.e.
only when that process is executing on a (random) CPU,
the counters need to be virtualized, similarly to the way
each process has a private view of the processor’s register
set, although it runs in a timesharing fashion and may mi-
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grate to other processors. Thus, the Operating System needs
to be extended, so that it sets up monitoring of a process’s
events before context switching into it, and samples the per-
formance monitoring counters when its time quantum ex-
pires.

In our case, the virtual performance counter functional-
ity was provided under Linux using the perfctr library [18].
Perfctr comprises a linux kernel module and a userspace
library. The kernel module code runs in privileged ker-
nelspace and performs functions such as programming the
performance counters and sampling their values at every
context switch, while the userspace library communicates
with the kernel module via the system call layer and ex-
poses a portable interface to programmers, in order to set
up and monitor virtual performance counters.

4.2. Monitoring NIC memory bandwidth con-
sumption

To determine the memory bus bandwidth demands ac-
curately, our scheduler needs to take into account the con-
tention between the system CPUs and the NIC for access
to data residing in main memory. However, the OS-bypass,
User Level Networking characteristics of modern cluster
interconnection architectures make it difficult to intercept
the communication process and monitor the communica-
tion load in a way that is transparent to the application.
The greatest part of the communication functionality now
resides within the NIC and is implemented in firmware ex-
ecuting on embedded microprocessors onboard it. Since the
Operating System is not in the critical path of communica-
tion, we have to make modifications to the NIC firmware
and provide a method for MemBUS to access the monitor-
ing information directly.

Our testbed is based on Myrinet NICs and the GM
message passing API for communication between nodes.
Myrinet uses point-to-point 2+2Gbps fiber optic links, and
wormhole-routing crossbar switching. In contrast to con-
ventional networking technologies such as TCP/IP, it aims
at minimizing latency by offloading communication func-
tions to an embedded RISC microprocessor onboard the
NIC, called the LANai, and removing the Operating System
from the critical path.

GM [16] is the low-level message passing interface for
Myrinet, providing high bandwidth, low latency ordered de-
livery of messages. It comprises the firmware executing on
the LANai, a Linux kernel module and a userspace library.
GM allows a process to exchange messages directly from
userspace, by mapping part of LANai memory (a so called
GM port) to its virtual address space. This is a privileged
operation that is done via a system call to the GM ker-
nel module, but afterwards the process may directly manip-
ulate the corresponding send and receive queues in order

to request DMA transfers to and from pinnned userspace
buffers. The OS is bypassed entirely, since all protection and
communication functions (memory range checking, mes-
sage matching, packet (re-)transmissions), are undertaken
by the LANai. Moreover, since all message data are trans-
ferred over DMA, the CPU is free to perform useful compu-
tation, and computation-to-communication overlapping is
possible.

To monitor the memory bandwidth consumption of
the NIC, we modified the firmware portion of GM-2,
adding two 64-bit counters per GM port, which re-
side in LANai memory. The value of the counters is up-
dated by the firmware whenever a DMA transaction com-
pletes from or to host main memory, so that they reflect the
total amount of data transferred in each direction. The ker-
nel module portion of GM-2 was also extended to include
a “read counters” request, which is used by the sched-
uler in order to periodically sample the values of these
counters and copy them to userspace.

5. Experimental evaluation

To evaluate the efficiency of our scheduling policy, we
experimentally compared our userspace scheduler imple-
mentation to a modern SMP scheduler, the O(1) scheduler
that is part of the Linux 2.6 kernel series. We measured the
time required to complete the execution of a series of mul-
tiprogrammed workloads both under the Linux scheduler
and MemBUS. The workloads consisted of a mixture of low
and high bandwidth applications, together with instances of
membench and myribench.

In the first set of experiments, each workload consisted
of two instances of membench along with two instances
of an application benchmark. The execution time of each
membench instance was selected so that it matched the ex-
ecution time of a benchmark process when executing on its
own. Since the bandwidth demands of the benchmarks vary
considerably, we can observe the behaviour of our sched-
uler in various combination of high-bandwidth (i.e. the in-
stances of membench) and low bandwidth jobs. All ex-
periments were run with a time quantum of tq = 0.7s for
MemBUS, which is about two or three times the time quan-
tum of the underlying Linux scheduler (100-200ms). Lower
values of tq would not make much sense, since they could
interfere with the decisions made by the Linux scheduler
and might increase the scheduling overhead considerably.
We experimented with various values of the sliding win-
dow w used to determine the bandwidth demands of appli-
cations, but did not observe significant differences in the be-
haviour of our scheduler, probably because the memory be-
haviour of our benchmarks changes relatively slowly over
time. The results presented in this section use a value of
w = 1. The execution times, averaged over ten runs, are
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Figure 3. Comparison of workload execution times

presented in the left part of fig. 3 and are normalized rela-
tive to the execution time of the Linux scheduler.

We can see that the improvements in the total execution
time are significant, ranging from about 4% in the case of
queens to 25% in the case of crafty. The relative perfor-
mance of MemBUS increases as the bandwidth demands of
the jobs in the workload become more diverse, as this al-
lows it greater flexibility to match low with high bandwidth
demanding jobs and eliminate or at least reduce the effects
of memory bus saturation. On the other hand, the improve-
ment is smaller in the case of queens and bzip2 since the
performance gain of co-scheduling an instance of bzip2
with one of membench is relatively small compared to co-
scheduling two instances of bzip2 or membench. It is
also interesting to compare the performance of MemBUS
to the ideal execution time. This is the expected execu-
tion time if there was no interference between processes,
computed as the sum of CPU times divided in half, since
we are using a dual processor system. In the cases where
memory bus saturation can be avoided almost completely
(gzip and crafty), the performance of MemBUS actu-
ally comes very close to this prediction.

In the second set of experiments, we increase the de-
gree of multiprogramming, by executing workloads con-
sisting of four instances of membench and four instances
of a benchmark. The results are presented in the right part
of fig. 3. Unfortunately we were unable to run this exper-
iment for queens, since the total memory requirement
of four instances exceeded the total memory of the node.
Again, MemBUS delivers average throughput increases in
the range of 5-25%.

Finally, in fig. 4 we have plotted the execution times for
workloads containing instances of myribench, which em-
ulates a communication intensive application, causing the
NIC to consume a large portion of the available memory

bus bandwidth (approx. 350MB/s).
The way MemBUS reduces completion times for multi-

programmed workloads can be better seen in fig. 5, where
we have plotted the CPU time consumed by each process in-
dividually, both under Linux and under MemBUS, for vari-
ous workload executions. When executing under the Linux
scheduler we see that it is the memory intensive applica-
tions, the instances of membench, that suffer the great-
est slowdown, while the low bandwidth demanding appli-
cations remain relatively unnafected. On the other hand
MemBUS minimizes interference on the shared memory
bus, reducing the time that memory intensive applications
stall on memory references and thus lowering their total
CPU time requirement.

The results on the throughput improvement of MemBUS
compared to the standard Linux scheduler are averaged over
multiple runs. It is worth noting, however, that the exe-
cution time of the workloads varied widely when run di-
rectly over the Linux scheduler, while the execution time
under MemBUS remained almost constant. Some examples
are presented in fig. 6. This can be attributed to the cache
affine properties of the scheduler: Interprocessor migrations
of processes are penalized heavily when making schedul-
ing decisions, and are rare. If two memory intensive pro-
cesses are affine to the same processor, they cannot inter-
fere with each other, since they do not run simultaneously.
Thus, the execution time under Linux depends significantly
on the way the processes of the workload are distributed ini-
tially among processors, which is essentially random.

6. Conclusions

Contention on the shared memory bus can significantly
limit the performance of an SMP cluster node when ex-
ecuting multiprogrammed workloads. Memory bus satu-
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Figure 5. CPU times for each process of the workload individually

ration can lead to significant execution slowdowns, since
high bandwidth demanding processes executing in paral-
lel are effectively serialized when performing memory ac-
cesses. Motivated by our observations, we introduced a per-
formance monitoring framework, which allows for realtime
monitoring of CPU and NIC bandwidth consumption, then
used it to implement a memory bandwidth aware scheduler.
Experimental comparison between our scheduler and the
standard Linux 2.6 scheduler showed a significant reduc-
tion in the CPU time required by high bandwidth processes,
leading to an average 5-25% increase in system through-
put, as well as more predictable execution times. We expect
the performance improvement to increase with the number
of processors in the system.

In the future, we will continue in two directions. We plan
to extend our scheduling algorithm so that contention for

shared resources apart from the memory bus is taken into
account. For example, in a multiprogrammed SMP node
processes may also contend for access to the interconnec-
tion link bandwidth, or to functional units and shared lev-
els of the cache hierarchy in the case of SMTs. Also, we
plan to investigate moving part of our scheduler implemen-
tation to kernelspace, in order to make it applicable to work-
loads featuring not only computationally intensive but also
I/O intensive applications.
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