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Abstract

The n-dimensional grid is one of the most
representative patterns of data flow in parallel
computation. The most frequently used scheduling models
for grids is the unit execution - unit communication time
(UET-UCT). In this paper we enhance the model of n-
dimensional grid by adding extra diagonal edges. First, we
calculate the optimal makespan for the generalized UET-

which is based on the critical path of tasks. On the other
hand, by restricting the general scheduling problem to
instances with simple properties, we may come up with
tractable solutions. For example, Jung, Kirousis et al. in
[7] have presented a polynomial algorithm which finds the
optimal makespan when the communication cost is
constant and task duplication is allowed.
When considering UET cases, Andronikos et al. in [1],

UCT grid topology and, then, we establish the minimum have given a polynomial time optimal scheduling and
number of processors required, to achieve the optimal mapping into systolic architectures, where, due to the
makespan. Furthermore, we solve the scheduling problem special hardware, communication need not be taken into
for generalized n-dimensional grids by proposing an consideration. In addition to this, in UET scheduling of

optimal time and space scheduling strategy. We thus
prove that UET-UCT scheduling of generalized n-
dimensional grids is low complexity tractable.

1. Introduction

Task scheduling is one of the most important and
difficult problems in parallel systems. Since the general
scheduling problem is known to be NP-complete (see
Ullman [13]), researchers have given attention to other
methods such as heuristics, approximation algorithms etc.
In their paper Papadimitriou and Yannakakis [10] proved
the intractability of the general scheduling problem of a
task graph with arbitrary communication and computation
times and proposed a clever heuristic with guaranteed
worst performance twice the optimum makespan. In
addition to this, Gerasoulis and Yang have proposed in
[9], [14] the Dominant Sequence Clustering, a low
complexity heuristic for general task graph scheduling,

arbitrary task graphs, which are produced by general
nested loops, Koziris et al in [8] have given a polynomial
time schedule and polynomial time efficient mapping onto
a clique of processors, based on PERT techniques.

When both computation and communication times are
restricted to have unit time length, it is known that
scheduling UET-UCT graphs with bounded number of
processors is NP-complete as Rayward-Smith proved in
[12] or Picouleau in [11] by reduction from the
unbounded UET-UCT instance. Even the case of
unlimited processors, when no task duplication is allowed,
is in general polynomially intractable [10]. On the other
hand, using task duplication, Colin et Chretienne in [6]
have presented a polynomial optimal schedule for
arbitrary task graphs with UET and SCT (Small
Communication Times, thus including UCT). Since the
arbitrary task graph scheduling with UET- UCT and no
duplication with unlimited processors is NP-complete,
researchers have focused on special cases of DAGS. In [4]
Chretienne presented an algorithm linear in the cardinality
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of the vertices of the graph, for optimal makespan on SCT 2. Generalized Grids
in-trees and out-trees (thus covering UCT). In addition to
this, there exist polynomial optimal solutions for Series- |n this section we introduce the concept of generalized
Parallel digraphs, bipartite graphs and trees with UCT as grid, which is an enhancement of the usual grid model.
surveyed in [5].

This paper solves the problem of UET-UCT 92 1 Notation
scheduling for task graphs having the form of a grid on
unbounded number of processors, assuming N0 |nthe rest of the paper the following notation is used:
duplication. Grids and particularly generalized grids are , N is the set of naturals.
typical 'Fask graphs, WhICh. model most of the signal n is the dimension of the grid.
processing _algon_thms and linear alggbra methods such as, Ge_is the n-dimensional grid witkerminal point
matrix multiplication, LU decomposition etc. We extend n
the simple grid model of [2] by considering generalized n-  Pr=(Us, -+, W). _ _
dimensional grids. We prove that the time and space * GVS is thegrid vector seti.e., the set of the
scheduling problem for generalized grid is low complexity ~Vvectors of the grid.
tractable. We calculate theptimal makesparior UET-
UCT grids. Having established the optimal makespan, we 2.2.Basic Concepts
calculate theoptimal number of processors.e., the
minimum number of processors required to achieve the Definition 2.1 The initial segment of N" with
optimal makespan. We present an optimal time and space terminal pointP.=(uy, ..., u,)ON", denoted NP,), is the
scheduling policy for UET-UCT grids. Our schedule set{(ki, ..., k)ON"| Gski<u, 1<i<n}. [
partitions the vertices of the grid into disjoint sets that lie Definition 2.2 Lete be (0,...,0,1,0,...,0), 1<i<n.
on a family of parallel hyperplanes. Each hyperplane a9 ng

contains vertices, which are executed on different The grid vector setdenoted GVS, is the seti#(dy, ...,
processors at the same time. The hyperplanes are defined

differently in each case due to the fact that in the g ON"|d=h,e+ ... A6, Where z;@o and) {0, 13,
UET/UCT case we must also consider the communication o=
overhead. When communication is taken into account, the 1<j<n}. Given adOGVS, supportd) is the number of non
maximal coordinate of the grid determines the form of the zerg coordinates af. n
optimal hyperplane. In addition to the above, we provide pefinition 2.3 The generalized n-dimensional grid
the reader with two scheduling algorithms which calculate jith terminal point B, denoted @, is the DAG with
the exact time instant and processor number, where an "
arbitrary vertex of the grid is to be executed under an
optimal schedule. The time complexity of these
algorithms is independent of the grid size and depends
only on the dimension n of the grid. Thus they outperform
all previously known PERT or CPM techniques for
UET/UET-UCT scheduling of general task graphs [5].
Since we exploit the regularity of the grid task graph, we
need not navigate through the graph in polynomial time to
calculate the properties of a task node. We calculate for (2) Itis trivial to see that |GVS| A g%z”-l
any task, in constant time, given its coordinates, the exact E i '
execution time, under an optimal schedule, and the total =1
number of adequate processors.

The paper is organized as follows: In Section 2 we give define the following sets:
the notation and some definitions and in Section 3 we (1) IN(j) = {iONy(P,) |j=i+d, wheredOGVS}, and
present the UET-UCT optimal scheduling strategy for n- (2) OUT(j) = {iONy(P,) | i=j+d, wheredDOGVS}. =
dimensional generalized grids. Finally in Section 4 we The directed edges of a grid induce a partial ordering
establish the minimum number of processors adequate for over the vertices in a natural way. ilfandj are two
scheduling UET-UCT grids and we present an illustrative vertices of a grid, we writé<j iff [d,...[0d,JGVS such
example of a 3-D grid. thatj=i+dy+ ... +dy.

The intuition behind the partial ordering notion is that
the edges represeptecedence constraintbat have to be
satisfied in order to correctly complete the tasks
represented by the vertices. The formal definition of the

vertices the set §P,) and directed edges the sef, {(
)O(No(Py))? |j=i+d, dOGVS}. n

The following properties hold:
(1) All the n coordinates of the vectors of the GVS are
either 0 or 1. Naturally, thé vector has been excluded,
which means that suppaf)el OdOGVS. The vectors
that have exactly one coordinate 1 and all other O are the n
unitary vectors, 1<i<n.

Definition 2.4 For every vertex of a grid G, we



schedule must reflect our intuition that a velteorrectly
begins its execution at instant k &l the verticesOIN(j)
have completed their execution and communicated their
results (if needed) tpby that instant

Definition 2.5

A schedule for the grid & denoted S((), is an

ordered couple (e, Srod, Where $ve and $roc are

that the makespan is the execution time of the terminal
point R, Thus, an optimal time scheduleryg .

schedules Pto be executed at the least possible time. In

what follows, we first establish the least possible time at
which R, can be executed and then, the scheduling policy,
which organizes the execution of the other nodes so as to

achieve the optimal execution time fof. P

the time and processor schedules, respectively, defined as

follows:
(1) Seroc No(Pn) —{0, ..., m}, mON, such that task is
assigned to processosradj), and

(2) Srwe: No(P) =N such that 0j ONg(Py) TiDING)
. . Op,  if Sprocli) =Sprocli)
Srime(i)-Srive(i) = HF”C, i Sorodl) % Somodi) wherep

is the processing time aldhe communication delay.
Themakesparof a time schedulee for the grid
Gp,, denoted M(Swe), is max{Sme()+p | jUNo(Pn)},
wherep is the processing time.
Given the schedule S@:(STIMEy S::Ro(), NPROC:
max{[{j INo(Pn) : Srime(j)=K} : O<k<M(Srime)}- u

The makespan gives the completion time of the last
task and, therefore, determines the time required for the
completion of the whole grid. Noc gives the maximum
number of processors required by the specific schedule.

In case of UET we assunp=l, c=0, and in case of
UET/UCT we assump=c=1.

In this paper, our objectives are:
(1) To find anoptimal time scheduléSnMEOPT, i.e., a
schedule whose makespamigimum
(2) To establish theoptimal number of processors
NPROCOPf i.e., the minimum number of processors
required to execute an optimal time schedule.
(3) To find an optimal space schedulS:RocopT that
realizes Qe opT using N’ROCopT processors.

A schedule (§ve opT SpRocom) is calledoptimaland is
denoted SPT(Gpn).
Theorem 2.1 For every grid G, and every time
schedule §ye we have:

M(Stive) = Srive(Pn)+p, wherep is the processing
time.
Proof

First, notice that Sue(P)>Srve(j), 0jONo(Py)-{P.}
for every time schedule §e. To prove that, let us
assume to the contrary that for sorjwP, we have
Srive()=Srive(Py)- However, ifj£P, thenj<P, and from
Definition 2.5 we derive ue(P)>Srve(j), which is a
contradiction. It must, therefore, be the case that&,)
=max{Srime(j) | JUNo(P)}, i.e., M(Srme)=Srime(Pn)+p,
wherep is the processing time. O

By Definition 2.5, an optimal time schedulemﬁopT

achieves the minimum makespan. Theorem 2.1 asserts

3. Optimal Parallel Time for UET-UCT

In this section, we shall study the generalized UET-
UCT grids. We partition the vertices of a grid into parallel
hyperplanes. However, the presence of communication
delays imposes further difficulties, which differentiate the
equation of the optimal hyperplane from the simple UET
case. We prove that under an optimal scheduling policy,
all vertices belonging to the same hyperplane are executed
at the same time instant.

Example 3.1 Given an arbitraryj which is
executed at time Kk, consider the set OUTUnder any
optimal scheduling strateggt most oneJOUT(j) will be
executed at time k+1 and all others at later time instants.
Obviously, the issue here is the selection ofittiet will

lead to the optimal makespan. It will be shown that the
maximal coordinate of the grid determines this selection.

Fig. 2: An optimal schedule for G

Po.



In the UET-UCT case, due to the presence of
communication delays, there is no unique family of
hyperplanes that are optimal for every grid. Instead, the
family of optimal hyperplanes depends on the maximal
coordinate of the terminal point. For the grig, Gee Fig.

1) the optimal hyperplanes are;+2x=k, 0<k<10,
whereas for the grid # (see Fig. 2) the optimal

hyperplanes are 2xx,=k, 0<k<10. O
Definition 3.1 Given the grid Gn, ITi(k), 1<i<n, is
the set {(k, ..., k)ONg(Py) | 20¢+ ... +X1+Xt+ ...
+Xn)+X=K, kOON}. n

Geometrically ITi(k) consists of the common points of
the gridG(R,) and the n-1 dimensional hyperplane ;2(x
oo XXt LX) XK
Lemma 3.1 For every grid Gn, with B=(uy, ...,

u,), the following hold:

(1) I11;(0) = {0} and ILi2wt ... +2u +tU+2U.+ ...
+2u) = {Pn},

(2) TII(k) 2 O, O=k<2(ug+... +U U+ FU) U,

(3) IIi(k) =0, when k2(u+...+U. +Uq+.. . +U)+U;,

(4) OjOrk)r(d<rsn) j+e0Ny(P,), 0=k<2(w+ ... +y.
1HUt L W) FUL a

Lemma 3.2 presents the relation between vertices
belonging to successive hyperplariégk), I1(k+1) and
II;(k+2). From any vertex belonging toIli(k+2), if we
backtrack using thes vector, the resulting vertex will
definitely belong to the previousli(k+1) plane. This
property reflects the fact that all points connected with
vectore will be executed osuccessivéime steps by the
sameprocessor. Thus, the communication delay due to
is zero. On the other hand if we go back using any other
e#e, the resulting vertex will be on tha(k) plane. In
this case, the, edge imposes a unit communication delay.
Finally, if we backtrack from any vertgxbelonging to
[T(k+2), using an arbitrary vectod#e, I1<r<n, the
resulting vertex will belong to a previous hyperplane
IT5(r), r<k.

Lemma 3.2 For every grid Gn, with B=(uy, ...,
uy), the following hold:

(1) If jOrk+1l) and j-e0Ng(P,), then j-eOIT(K),
O=k<2(u+ ... +ugtUt .. FU)HU,

(2) If jOrk+2) and j-e0Ng(P,), then j-eOIT(K),
1<r#isn, Rk<2(ugt ... +UqtUt .. HU)+HU-D,

®) No(Pn)ﬂ(O(Hi(k+2)€r)D(Hi(k+l)ﬁ)) =I1(K),

r=1
r#1

0<k<2(ug+ ... U +Uqg+ ... +U)+U-1,

@) NoPYn | | (Mk+2)d) T || IL(), Osk<2(ut
’ dELGJVS r:kL+JB-2n

oo U FU T L W) FU-D. a

Now that we have partitioned the grid into hyperplanes
and established the relation among vertices belonging to
successive hyperplanes, we can present the optimal
scheduling policy based on this partitioning. The
following lemma gives the least possible execution time
for every vertex of the grid. Every vertgx(ky, ..., k,) has
amaximal coordinatgi.e., a coordinate, kor which k=k;,
1<r<n. It can be proved that the earliest execution time of
jis 2(kg+ ... +kit+kigt ... +k)+ki, where kis a maximal
coordinate of.

Lemma 3.3 Let Gpn be a UET-UCT grid and let
ki be a maximal coordinate of vertgx(ky, ..., k,). Then
the earliest execution time pfs k if j OIT;(k). O

Now, we can establish the optimal execution time for
any UET-UCT grid G,
Theorem 3.1 Let y be a maximal coordinate of the
terminal point R=(uy, ..., u,) of the UET-UCT grid Gn.

Then M(S.MEOPQ:Z(uﬁ e U U L W) UL,

Proof
We know that M($MEOPT):ST|MEOPT(P'1)+1 (Theorem

2.1); consequently, Lemma 3.3 implies thats . (P:) =
2(w+ ... +UFULt L FY) UL, O

3.1.0Optimal Time Scheduling Policy

In the UET-UCT case we can not execute all vertices of
the grid at the earliest possible time if we want to achieve
the optimal makespan. As a resthie number of different
optimal time schedules equals the number of maximal
coordinates of the terminal point of the grill u; is a
maximal coordinate of P the following time schedule is
optimal: S.MEOPT(j):Z(k1+ oo Fkatkigt LK)k,
wherej=(Ky, ..., k)ONg(Py).

Example 3.2 The optimal schedule for the grids
Gp, and G, are depicted in Fig. 1 and Fig. 4, respectively.

In order to achieve the optimal time schedule for the
terminal point, we have to execute certain points at a later
time. In &3 these points are of the formek+kses, where

0<k,<2 and &kz<1 (see Fig. 3). The vertices with the
same y and z coordinates (Fig. 3) must be executed on the
same processor, which means that the optimal time
schedule must execute the verticedlgfk) at instant Kk,

O<k<9 (see Fig. 4), i.e., we havem&OPT(Pg):g. The

optimal time schedule is given in Table 1; the row
headings are the processors and the column headings are
the execution times of the vertices. Note that this schedule
is not optimal in terms of processors. O

4. Optimal Number of Processors with UCT

In this section we shall establish the optimal number of
processors for UET-UCT grids, using the optimal time



scheduling policy of Section 3, which determines the least Lemma 4.1 For every UET-UCT grid e, with
possible number of processors required at every instanceerminal  point  R=(u, ..., W), [L(K)| =
k. In what foIIows,HiMAX, I<i<n, denotes the maximum H1
+
g

kO n ko .
value of (K}, OSKS2(Up+ .. +Ug+Uart ... +U)+U. %‘1@ Z(—l)f ZE” B (et D = (D) ‘1E
H = H

H n-1 = n-1 E
, Where ti= éu?'% and y=u, I<r#isn, k<2(w+ ... +u

RV TER R VN LTS
Proof

The cardinality ofIIi(k) is equal to the number of
integer solutions of the equation2x... +2%.1+2X.1+ ...
+2%,+X=K, 0K<2(+ ... +Uq+Ugg+ ... +4)+U (1), such
that Gex,<u,+1. One can verify that this number is equal to
the number of integer solutions of the equatigh x..

X L A= %E where &x< Sﬁgﬂ and &x,<u+1,

1<r#i<n. This number is given by the following formula:

n-1 r=1
In the above formula, n is the dimension of the grid and
the inner summation ranges over all r-combinations of n

kO n ko o B E
EH Erlwz(_l)rzgq+%5r(ul+l) (U +D 1[]'
H H n-1 H

(see [3]). O

The following two corollaries follow immediately from
Lemma 4.1.
Corollary 4.1 Let B=(uy, ..., W) be the terminal
point of the grid Gn and let wu, 1<rzi<n. Then [Ti(K)|
=|T(K)|, O=k<2(ugt ... +YgtUegt .. W) FU. 0
Corollary 4.2 For every UET-UCT grid g?] with
terminal point B=(u;, ..., W), we have HiMAX:
|1-[i(DZ(Ul+---+Ui-1+Ui+1+---+Un)+Ui @| 0

dH 2
Lemma 4.2 Let y be a maximal coordinate of the

terminal point R=(uy, ..., ;) of the grid G- ThenIIi(k) =

CA, O=sk<2(ug+ ... +y.qtUggt ... +U)+U.
From Section 3 we know that different maximal
coordinates of the terminal point correspond to different

Fig. 4: An optimal scheduling of G ;.

Table 1: The optimal time schedule for G »,,.

optimal time schedules. If we combine this fact with

P (0,?),0 (1110‘0 (2?0‘ )(33’0‘3) 4 2 8 ! 8 2 Corollary 4_.1, we Qeduce tha_t any_two CAaAnd CA/

P 0,0,1(1,0,1) (2,0,1) (3,0.00) corresponding to different optimal time schedules have
P, (0,1,0)(1,1,0) (2,1,0) (3,1,0) the same cardinality. We can, therefore, proceed to state
Ps 0,1,1)(1,1,1) (2,1,1) (3,1,1) the following lemma.

ic] (0,2,0)(1,2,0)(2,2,0) (3,2,0) Lemma 4.3 Let CAyax be a maximal concurrent

Ps 021)02922DB2))  antichain corresponding to an optimal time schedule for
Definition 4.1 Given an optimal time schedule for the grid G, with R=(U, ..., t). Then [Chux] <

the grid Gnn, the k-th concurrent antichainof Gpn, NPROCOPT 0

O<k<ui+ ...+u, denoted CA is the set [ | Theorem 4.1 Let y be a maximal coordinate of the

STlMEOPT(j):k}' A concurrent antichain ismaximal terminal point R=(uy, ..., ) of the UET-UCT grid Gn.

denoted CA, iff [CAuRICAJ, Ggksus+ ...+t m Then Norogpr = Iy ay - O



4.1.Optimal Scheduling Policy achieves the optimal makespan and the minimum number

of processors in constant time. While the case of
Lemma 4.3 in conjunction with Lemma 4.1 gives a unbounded number of processors is solved, the case of
straightforward method for scheduling UET-UCT grids. bounded number of available processors remains open.
From Section 3 we know that any optimal scheduling

policy demands thatT&EOPT(j):k for every pointj=(ky, References
1. Andronikos, T., Koziris, N., Tsiatsoulis, Z.,

' k"),DH‘(k)’ vyhere k—2([§+ co Rkt fk")+ki Papakonstantinou, G., and Tsanakas, P. Lower Time
and yis a maximal coordinate of,PIf ki>1, thenj must and Processor Bounds for Efficient Mappind o
be executed by theameprocessor that completed vertices Uniform Dependence Algorithms into Systolic Arrays.
Ky, -y K1, O, Kiqy vy K,y oy (Key oeny K, K51, Kig, oo To appear inJournal of Parallel Algorithms ah
k.). If ki=0, thenj can be executed by any of the available Applications
processors for the k time instant. The exact processor 2. Bampis, E.,. Delorme, C., and Konig, J.C. Optimal
wherej will be executed can be easily calculated. This g‘é:‘ae}i“'s‘;smf;czsﬁuﬁ ()C:]n'f'ihgor?;ihcsa |VX;hpe%?SmOTLér;ﬁ?;$2
s e  sie ndependent s sy o UET- 0o o0

. . . ’ 3. Berman, G., and Fryer, K.D.Introduction to
Obviously, the calculation of the optimal schedule for the Combinatorics Academic Press, New York, 1972.
whole grid is, inevitably, linear in the size of the grid. 4. Chretienne, P. A Polynomial algorithm to Optimally
Example 4.1 For G, P:=(3, 2, 1), we getli(k)| = Schedule Tasks over a Virtual Distributed System under

Tree-like Precedence Constrairfsir. J. Oper. Rest3

0,8 HHH nH al . 225-230, 1989. |
%?Eﬁg%%%gl %54@,%5-2 %H—S 5. %phrgﬁgnzryse(,) .Ilf.)SZmd Picouleau C.. Scheduling with

Communication Delays: A Surveyin Scheduling
Osk<9 (see Table 2). Thus,phbg,,~Ilmax=4. In Table Theory and its Applicationpp 65-90. John Wiley &

3, we present the optimal schedule; the row headings are Sons 1995. _ o
the processors and the column headings are the execution gc’“”li JCY and Chretnenrlle, P. CdPM Sﬁhe‘j“u'.ng with
times of the vertices. It is important to note that we reuse mall. Communication Delays and Task Duplication.

. Oper. Res39, pp. 680-684.
processing elements 0 and 1. O 7. Jung, H., Kirousis, L., and Spirakis, P. Lower Bounds

and Efficient Algorithms for multiprocessor Scheduling
of DAGS with communication Delay$®roceedings ©
1st ACM SPAA 1989, pp. 254-26dnd Information

Table 2: The cardinality of  i(k) for G r,,.

k 0|1| 2| 3| 4[5 6] 718]°9 and Computation 105, pp 94-104, 1993.
numofprocs: | 1 | 1| 3| 3| 4| 4| 3] 3| 1|1 8. Koziris, N., Papakonstantinou, G., and Tsanakas, P.
Optimal Time and Efficient Space Free Scheduling For
Table 3: The optimal UET-UCT schedule for G »,. Nested LoopsThe Computer JournaB9, 5, pp. 439-
448, 1996.
0 T > 3 7 3 5 7 5 5 9. Gerasoulis, A., and Yang, T. On the Granularity and
Py 0,0.0](1,0.0) 2.0.0) (3.0.0) Clustering of Dilrec.ted Acyclic Task GraphtEEE
P, 0,0,1)(1,0.1) 2,0.1) B.O0) Trans. .Pa}re.lllel Distrib. Sys#, 6, pp. 586-701, 1993.
P, 0,1,0](1,1,0) (2,1,0) 3,1,p) 10. Papadimitriou, C., and Yannakakis, M. Toward an
P, 0,111,151 2.1,1) B,LE) Architecture-Independent  Analysis  of  Parallel
Po (0,2,01(1,2,0) (2,2,0)(3,2.0) Algorithms. SIAM J. Comput19, pp. 322-328, 1990.
P 02,1121 2.2.1)3.2]) Extended Abstract in Proceedings STCE88

11. Picouleau, C. Etude de Problems d’ Optimization dans
les Systemes Distribues. These, Universite Pierre et

5. Conclusion Marie Curie, 1992.
12. Rayward-Smith, V.J. UET Scheduling with Unit
In this paper we have proved that UET-UCT Interprocessor Communication Delays and Unlimited
scheduling of task graphs having the form of n- Number of Processorfiscrete Applied Mathematics
dimensional generalized grids is not only tractable but it 18, pp. 55-71, 1987.

also has a constant time solution. We have presented an 13- Ullman, J. NP-Complete Scheduling probledwirnal
optimal strategy for both time and space scheduling of of Computer and Syst. Scienck8, pp. 384-393, 1975.

: . . . 14. T. Yang, T., and Gerasoulis, A. DSC: Scheduling
these grids with and without communication delays. The Parallel Tasks on an Unbounded Number of Processors.

proposed time strategy for UET-UCT graphs is proved to IEEE Trans. Parallel Distrib. Sys&, 9, pp. 951-967,
achieve the minimum thus optimal makespan. In addition 1994.

to this, the exact lowest number of processors needed to
execute a grid task graph with UET and unit
communication delays is calculated. Our scheduling



	Welcome to IPPS Conference Proceedings
	IPPS 1997
	Introduction
	Author Index
	Session Index


