
Minimizing Completion Time for Loop Tiling with Computation and
Communication Overlapping

Georgios Goumas, Aristidis Sotiropoulos and Nectarios Koziris
National Technical University of Athens

Dept. of Electrical and Computer Engineering
Computing Systems Laboratory

Zografou Campus, Zografou 15773, Greece
e-mail: fgoumas, sotirop, nkozirisg@cslab.ece.ntua.gr

Abstract

This paper proposes a new method for the problem of
minimizing the execution time of nested for-loops using a
tiling transformation. In our approach, we are interested
not only in tile size and shape according to the required
communication to computation ratio, but also in overall
completion time. We select a time hyperplane to execute
different tiles much more efficiently by exploiting the inher-
ent overlapping between communication and computation
phases among successive, atomic tile executions. We assign
tiles to processors according to the tile space boundaries,
thus considering the iteration space bounds. Our schedule
considerably reduces overall completion time under the as-
sumption that some part from every communication phase
can be efficiently overlapped with atomic, pure tile compu-
tations. The overall schedule resembles a pipelined datap-
ath where computations are not anymore interleaved with
sends and receives to non-local processors. Experimental
results in a cluster of Pentiums by using various MPI send
primitives show that the total completion time is signifi-
cantly reduced.

Index Terms—Loop tiling, communication overlap-
ping, supernodes, hyperplanes, MPI send-receive primi-
tives.

1 Introduction

One of the most difficult areas in the field of parallel
computing is the automatic loop parallelization and efficient
mapping onto different parallel architectures. The key issue
in loop mapping is to mitigate communication overhead by
efficiently controlling the computation to communication
grain. In distributed memory machines, explicit message
passing incurs extra time overhead due to message startup

latencies and data transfer delays.

In order to eliminate the communication overhead,
Shang [9], Hollander [5] and others, have presented meth-
ods for dividing the index space into independent sets of
iterations, which are assigned to different processors. How-
ever, in many cases, independent partitioning of the index
space is not feasible, thus data exchanges between proces-
sors impose additional communication delays. When fine
grain parallelism is concerned, several methods were pro-
posed to group together neighboring chains of iterations,
while preserving the optimal hyperplane schedule [7], [3].

As far as coarse grain parallelism is concerned, re-
searchers are dealing with the problem of alleviating the
communication overhead by applying the supernode or
tiling transformation. Under this scheme, neighboring it-
eration points are grouped together to built a larger compu-
tation node that can be atomically executed without any in-
tervention. Data exchanges are also grouped and performed
with a single message for each neighboring processor, at the
end of each atomic supernode execution. Supernode parti-
tioning of the iteration space was proposed by Irigoin and
Triolet in [6]. In their paper Ramanujam and Sadayappan
[8] showed the equivalence between the problem of find-
ing a set of extreme vectors for a given set of dependence
vectors and the problem of finding a tiling transformation H
that produce valid, deadlock-free tiles. The use of a com-
munication function that has to be minimized by linear pro-
gramming approaches was used by Boulet et al. in [2]. They
calculated the total communication produced by a tile as a
function of its sides and shape and proved that the mini-
mization can be done independently of the tile volume.

Nevertheless, all above approaches ignore the actual iter-
ation space boundaries. Although tile shape is of great im-
portance to communication reduction, the objective should
be the overall tiled space completion time. Hodzic and
Shang [4] proposed a method to correlate optimal tile size

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

and shape, based on overall completion time reduction.
They consider supernode transformations where data ex-
changes are between neighboring successive tiles. In this
context, the tiled space is considered as a new iteration
space with unitary dependencies. They applied the hyper-
plane transformation to these loop tiles and generated a
schedule where the objective is to reduce the overall time
by adjusting the tile size and shape appropriately. Each
processor executes all tiles along a specific dimension, by
interleaving computation and communication phases. All
processors first receive data, then compute and finally send
result data to neighbors in explicitly distinct phases, accord-
ing to the hyperplane scheduling vector.

In this paper we propose an alternative method for the
problem of scheduling the tiles to processors. Each atomic
tile execution involves a communication and a computation
phase and this is repeatedly done for all time planes. We are
compacting this sequence of communication and computa-
tion phases, by overlapping them for the different proces-
sors. The proposed method acts like enhancing the perfor-
mance of a processor’s datapath with pipelining, because a
processor computes its tile at k time step and concurrently
receives data from all neighbors to use them at k + 1 time
step and sends data produced at k � 1 time step. Since data
communications involve some startup latencies, we adjust
the computation grain to make room for this overhead and
try to overlap with all communication, which can be done in
parallel. The time hyperplane that allows for such overlap-
ping is determined by the bounds of the tiled space. Specif-
ically, the dimension with the larger boundary defines the
processor mapping, thus all tiles along this dimension are
mapped to the same processor. Previous work in the field of
UET-UCT scheduling of grid graphs in [1], has shown that
this schedule is optimal when the computation to commu-
nication ratio is one.

The rest of the paper is organized as follows: Basic ter-
minology used throughout the paper and definitions of loop
tiling are introduced in Section 2. In Section 3 we an-
alyze the properties of the non-overlapping optimal time
schedule of tiles, whereas in Section 4 we introduce the
pipelined approach of an overlapping time schedule.In Sec-
tion 5 we present the experimental results by implementing
both scheduling approaches to various problems using MPI
primitives. Finally, we summarize our results and propose
future work.

2 Models – Loop Tiling

2.1 The Model of the Algorithms

In this paper we consider algorithms with perfectly
nested FOR-loops and constant loop carried data depen-
dencies. That is, our algorithms are of the form:

FOR i1=l1 TO u1 DO
...
FOR in=ln TO un DO

AS1(i)
...
ASk(i)

ENDFOR
...

ENDFOR

where: (1) li and ui are integer-valued constants, meaning
that the iteration set is a parallelepiped/multidimensional
rectangle, (2) i = (i1; :::; in) and (3) AS1; :::; ASk are
assignment statements of the form V0 = E(V1; :::; Vl),
where V0 is an output variable indexed by i and produced
by expression E operating on input variables V1; :::; Vl,
also indexed by i.

2.2 Notation

Throughout this paper the following notation is
used: N is the set of naturals, Z is the set of in-
tegers, n is the number of nested FOR-loops of the
algorithm and m is the number of dependence vec-
tors of the algorithm. Jn � Zn is the set of indices:
Jn = fj(j1; :::; jn)jji 2 Z ^ li � ji � ui; 1 � i � ng.
Each point in this n-dimensional integer space is a distinct
instantiation of the loop body. A dependence vector is
denoted di = (di1; :::; din); 1 � i � m. The dependence
set D of an algorithm A is the set of all dependence vectors
of this algorithm: D = fdi1; di2; :::; dmg. Notice that all
dependence vectors are considered uniform and constant,
i.e. independent of the indices of computations.

2.3 Supernode Transformation

In a supernode transformation the index space Jn is par-
titioned into identical n-dimensional parallelepiped areas
(tiles or supernodes) formed by n independent families of
parallel hyperplanes. Supernode transformation is defined
by the n-dimensional square matrix H . Each row vector of
H is perpendicular to one family of hyperplanes forming
the tiles.

Dually, supernode transformation can be defined by n

linearly independent vectors, which are the sides of the su-
pernodes. Matrix P contains the side-vectors of a supern-
ode as column vectors. It holds P = H�1. Formally su-
pernode transformation is defined as follows:

r : Zn �! Z2n; r(j) =

�
bHjc

j �H�1bHjc

�
;

2

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

where bHjc identifies the coordinates of the tile that index
point j(j1; j2; : : : ; jn) is mapped to and j�H�1bHjc gives
the coordinates of j within that tile relative to the tile origin.
Thus the initial n-dimensional index space is transformed
to a 2n-dimensional one, the space of tiles and the space
of indexes within tiles. Indexes within tiles have to be se-
quentially executed, while tiles themselves can be assigned
to processors and executed in parallel according to a valid
hyperplane schedule as we will see in Sections 3 and 4. The
tiled space JS and the supernode dependence matrix DS

are defined as follows: JS = fjSjjS = bHjc; j 2 Jng,
DS = fdS jdS = bH(j0 + d)c; d 2 D; j0 2 Jnj0 �
bHj0c < 1g where j0 denotes the index points belonging
to the first complete tile starting from the origin of the in-
dex space Jn. The tiled space can be also written as JS =
fjS(jS1 ; : : : ; j

S
n)jj

S
i 2 Z ^ lSi � jSi � uSi ; 1 � i � ng.

Each point jS in this n-dimensional integer space JS is a
distinct tile with coordinates (jS1 ; j

S
2 ; : : : ; j

S
n).

Given an algorithm with dependence matrix D, for a
tiling to be legal, it must hold HD � 0. This ensures that
tiles are atomic and that the initial execution order is pre-
served [6], [8]. In the opposite case any execution order of
tiles would result in a deadlock.

In this paper we assume that all dependence vectors are
smaller than the tile size, thus they are entirely contained
in each supernode’s area, which means that jHDj < 1
[12] or alternatively that the supernode dependence matrix
DS contains only 0’s and 1’s. This assumption is quite
reasonable since dependence vectors for common problems
are relatively small, while tile sizes may result to be orders
of magnitude greater in systems with very fast processors.
So, for a computation to communication grain to be mean-
ingful tiles are large enough to encapsulate all dependence
vectors. In this case every tile needs to exchange data only
with its nearest neighbors, one in each dimension of Jn.

2.4 Computation Cost - Communication Cost

The number of index points contained in a supernode
expresses the respective computation cost of this supern-
ode (tile), and is calculated by det(P). Thus we have
Vcomp = det(P). The communication cost of a tile is pro-
portional to the number of iteration points that need to send
data to neighboring tiles, in other words, the sum of depen-
dence vectors cutting the supernode’s boundaries. This can
be calculated by the expression:

Vcomm(H) =
1

jdet(H)j

nX
i=1

nX
k=1

mX
j=1

hi;kdk;j (1)

Practically this formula computes and sums all possible
hidj , which express the contribution to communication of
every dependence vector, to every tile boundary surface.

If tiles along the same dimension are mapped to the same
processor, dependence vectors cutting the tile’s boundary
surface in the respective dimension impose no interproces-
sor communication. In that case, the communication cost is
calculated by the expression:

Vcomm(H) =
1

jdet(H)j

P
i2f1;:::;x�1;x+1;:::;ng;j2f1;:::;mg(H�xD)i;j0

(2)

where H�x denotes the H matrix with the column vector
vertical to the boundary surface in the dimension of proces-
sor mapping extracted. A technique, presented in [2] and
[11], calculates the vector H that imposes the minimum
amount of communication for a given supenode size.

2.5 Scheduling of Tiles

If HD � 0, tiles are atomic and preserve the initial ex-
ecution order. Consequently the tiled index space JS can
be scheduled using similar techniques to the initial index
space Jn. In this paper we use linear schedules. Recall
([10]) that a point j 2 Jn scheduled according to a linear
time schedule �, will be executed at tj = b�j+t0)disp� c, where
t0 = �min�i : i 2 Jn and disp� = min�di : di 2 D.
Thus, a tile jS 2 JS will be executed at tjS = b�j

S+t0
disp� c

2.6 Architecture

We discuss tiling and scheduling techniques for systems
using message-passing environments (e.g. MPI) for inter-
processor communication. Every processor has instant ac-
cess to its local memory and in order to communicate with
other processors it sends messages through an interconnec-
tion network. The time needed for a single computation is
denoted by tc, the communication startup time by ts (also
denoted tstartup in this paper), the transmission time per
byte by tt, and the number of bytes per node data by b.
There are two important parameters in the underlying archi-
tecture affecting the tiling process: The processor’s com-
putation speed, which affects the optimal tile size and the
system’s communication startup time and transmission time
which affects the optimal tile shape.

3 Non-overlapping Schedule

In [4], Hodzic and Shang have presented a scheme for
scheduling loops that have been transformed through a su-
pernode transformation. The optimal tile size g that mini-
mizes total execution time is determined by the actual par-
allel architecture parameters i.e. communication to compu-
tation grain. Given the tile size, they calculate the optimal
tile transformation H that reduces communication cost for

3

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

each tile. The rows of matrix H determine the actual tile
shape. Relative sizes for tile sides and shape are defined by
the dependence vectors of the algorithm, whereas tile vol-
ume (size g) is defined by the hardware parameters. Once
H is fully determined, it is applied to the original index
space. The resulting tiled space JS is scheduled using a lin-
ear time hyperplane �. All tiles along a certain dimension
are mapped to the same processor. Total execution of tiles
consists of successive computation phases interleaved with
communication ones. A processor receives the data needed
to execute a tile at time step i performs the computations
and sends to its neighboring processors the boundary data,
which will be used for tile calculations in time step i+ 1.

Thus the total execution time is given by:

T = P (g)(Tcomp + Tcomm); (3)

where Tcomm = Tstartup + Ttransmit, P (g) is the num-
ber of time hyperplanes needed to execute the algorithm,
Tcomp the execution time of a tile (Tcomp = gtc) and Tcomm

the communication time. Tcomm can be expressed as the
communication startup latency (Tstartup), and a factor ex-
pressing the transmission time (Ttransmit). Clearly the to-
tal execution time depends on tile size g, since it affects the
number of time planes (increase of tile size g leads to reduc-
tion of total time planes), the computation cost (gtc) and the
communication volume (Vcomm).

Let us now consider the implementation of the above
schedule in a message passing environment. In this context
the execution time of a computation and a communication
phase consists of: the transmission time of the data to be
received (Ttransmit), the receive startup time Tstartup, the
computation time Tcompute, the send startup time Tstartup
and the send transmission time(Ttransmit) (Fig. 4).

The overall parallel loop execution consists of atomic
computations of tiles interleaved with communication for
the transmission of the results to neighboring processors.
Since the tiled space JS has only the unitary dependence
vectors (see subsection 2.3), the optimal linear time sched-
ule can be easily proved to be: � = [1 1 : : : 1]. In Fig. 1,
the nonoverlapping schedule is shown for a tiled space
using six processors. Each time step between successive
hyperplanes contains a triplet of receive-compute-send
nonoverlapped subphases for each tile. All tiles along the
same dimension are mapped to the same processor.

Example 1
Consider the following algorithm:
for i1=0 to 9999

for i2=0 to 999
A(i1,i2)=A(i1 � 1,i2 � 1)+A(i1 � 1,i2)+A(i1,i2 � 1)

endfor
endfor
J2 = f(i1; i2) : 0 � i1 � 9999; 0 � i2 � 999g; D =

receive sendcompute receive sendcompute

compute comm.

receive(data,p1)

send(data,p2)

compute comm. compute comm.

receive sendcompute

compute comm.

compute comm.

compute comm.

receive sendcompute

receive send receive sendcomputecompute

P2
P3
P4

P2
P3
P4

P2

P3

P4

P

P

P1

5

6

t2 t3 t4 t51t t6

Figure 1. Nonoverlapping time schedule

f(1; 1); (1; 0); (0; 1)g. Suppose that for the target architecture
it holds tc � 1�sec (see experimental results in Section 5),
ts = 100tc (reasonable assumption since tc � ts, see Section 5)
and tt = 0; 8tc=byte (i.e. Ethernet 10Mbps). Then according to
expression (11) in [4], g = cts

tc
which gives the optimal tile size in

two dimensions, we have g = 100 (c = 1, the number of neigh-
boring processors). Communication volume calculated by formula
(2) is Vcomm = 20 and each data size is b = 4bytes (float). Con-
sequently Tcomp = gtc = 100tc, Tcomm = Tstartup+Ttransmit.
We have two startup latencies, one for each send and receive
performed, thus Tstartup = 2 � ts = 200tc. Ttransmit =

bVcommtt = 20 � 4 � 0; 8tc. We optimally choose square tiles

with side length 10 (H =

�
0:1 0
0 0:1

�
). The tiled space will

be: JS = f(iS1 ; i
S
2) : 0 � iS1 � 999; 0 � iS2 � 99g. Since

the maximum value for iS1 is 999, thus greater than the maximum
value for iS2 , we map along iS1 . The optimal scheduling vector
for this algorithm is � = (1; 1) and so the schedule length is
P = �(999; 99) � �(0; 0) + 1 = 999 + 99 + 1 = 1099. The
total execution time given by formula (3) is T = 1099(100tc +

200tc +20�4�0; 8tc) = 1099�364tc = 400036tc = 0:4 secs.
In this example, we assume Ttransmit as the overall transmission
time for a complete send-receive pair. We could have splitted it
into two pieces as well, without any effects on the results.

4

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

4 Overlapping Schedule

The linear schedule presented in the previous section
achieves a moderate processor utilization. All processor
nodes are concurrently either computing or communicat-
ing their results to their neighbors. However, what really
imposes such inefficient processor utilization, is the data
flow between succesive time steps. Specifically, it seems
that computations and respective communication substeps
for each time step should be serialized to preserve the cor-
rect execution order. Every processor should first receive
data, then compute and finally send the results to be used at
the next time step by its neighbor (Fig. 3).

It would be ideal if a node was able to receive, compute
and send data at the same time. Modern computers have
DMA engines and network interfaces (NICs) that can work
in parallel with the CPU. This means that some commu-
nication work can be overlapped with actual CPU cycles.
In addition to this, non blocking message passing prim-
itives mitigate processor waits for the completion of the
respective messaging operations. In fact, even some non-
blocking work needs the CPU, but most of kernel buffering
(TCP/IP stacks) and the transmission phase can be ideally
overlapped with other useful computation. A much more
thorough look at the correct data flow in the nonoverlap-
ping case, reveals the following interesting property: If we
slightly modify the initial linear schedule, then we could
overlap some communication time with computations. This
means that, in each time step, the processor should send and
receive data that is not directly dependent to the data com-
puted at this step. A valid time execution scheme would
be for a processor to receive data from all neighbors to use
them at k+1 time step, send data produced at previous time
step (k � 1) and compute its results (Fig. 3 and Fig. 2).

In [1] a linear hyperplane for the optimal time schedul-
ing of Unit Execution Times-Unit Communication Times
grid task graphs was presented. Grid graphs are like it-
eration spaces with unitary dependence vectors. Consid-
ering UET-UCT model, it is like having communication
phases that need equal time to computation ones. In [1], it
was also proven that the optimal space schedule for UET-
UCT was to assign all points along the maximal dimen-
sion to the same processor. The analogy of equal com-
putation to communication times with our case is obvi-
ous. If we could achieve a computation to communica-
tion grain g, so that the time needed to communicate with
the others is equal to the time needed for the CPU to
compute, then we could apply this slightly modified lin-
ear schedule and the respective space schedule. The opti-
mal time schedule for tile jS(jS1 ; j

S
2 ; : : : ; j

S
n) in this case is

2jS1 +2jS2 + : : :+2jSi�1 +2jSi+1 + : : :+2jSn + jSi , where
i is the dimension along which all tiles are mapped to the
same processor.

2

3

4

1

2

3

4

5

6

t t t t t t

k−1 k k+1 k+2

1 2 3 4 5 6

compute

compute

P

P

P

P

P

P

P

P

P

receive(data,p1)

send(data,p2)

compute
send receive send receive

compute

send receive

receivesend

compute

compute compute

compute

compute

compute

send

send

send

sendsend

send

receive

receive

receive

receive

receive

receive

receive

compute
send

Figure 2. Overlapping time schedule

In Fig. 2 the overlapping scheduling is shown. Consider,
for example, processor P3 at k time step: while it makes the
computation for a tile, it concurrently performs the follow-
ing: sends the results produced during k � 1 time step and
receives data from neighbors, to be used during the compu-
tation of the next tile at k+1 time step. Note the arcs shown
in Fig. 2. They depict the actual flow of data between suc-
cessive time steps (computes-sends-receives) in pipelined
way. The outcome of this schedule is to have successive
computations overlapped with communication phases, thus
theoretically 100% processor utilization.

MPI_buffers

Processor 1

MPI_buffers

Processor 2

kernel buffers kernel buffers
Kernel (OS) space

MPI (user) space

MPI_*recvMPI_*send

send receive

transfer through network media

Figure 5. MPI (user) and kernel (OS) space

4.1 Implementation on a Message-Passing Envi-
ronment

In a message-passing environment like MPI, a processor
first initiates all nonblocking receive operations, then per-

5

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

Time passed with ideal Overlapping

Time passed with Communication and Computation Overlapping

Time passed without Overlapping

Receive(data,k)

Send(data,k−2)

Receive(data,k−2) Compute(data,k−2)

Receive(data,k−1)

Send(data,k−2)

Receive(data,k)

Send(data,k−1)Compute(data,k−1)

Send(data,k)Compute(data,k)

Compute(data,k−1)

Compute(data,k)

Compute(data,k+1)

Send(data,k−1) Compute(data,k+1)

Compute(data,k)

Receive(data,k+1)

Receive(data,k+2)

Send(data,k)

Compute(data,k−1)

Receive(data,k)Send(data,k−2)

Send(data,k−1) Receive(data,k+1)

Receive(data,k+2)Send(data,k)

(a)

(b)

(c)

Figure 3. Various levels of computation to communication overlapping

21 3

1 2 3 4
(b)

(a) transmitTTstartup

Tfill_MPI_buffer Tfill_kernel_buffer fill_kernel_buffer fill_MPI_bufferTT

Tstartup

fill_MPI_bufferT

computeT T Tsend receive

T
TTreceive

(send) (receive)

(receive) (send)Tfill_kernel_buffer fill_kernel_bufferT
fill_MPI_bufferT compute fill_MPI_bufferT

transmit

A

B

TcomputereceiveT transmitT

Treceive

fill_kernel_bufferTTfill_MPI_buffer fill_kernel_bufferT

Figure 4. Analysis of a time step

forms the actual atomic tile computation and finally initi-
ates all the nonblocking send operations. While it computes
the tile iterations, it may receive data from neighbors and
send previously computed data to others as well. Since all
primitives are nonblocking, the issue of a send call, for ex-
ample, requires for processor attention, only to fill the MPI
system send buffer. After that, the control returns to the
processor which executes the rest of the program, thus the
computation of the tile. The same goes for the nonblocking
receive. Once such a call is issued, an MPI receive buffer
is prepared and the control returns immediately to the pro-
gram to continue its execution with the next command. As
long as the message arrives to the kernel, it is copied from
the kernel buffer to the receive buffer and then it is ready to
be used (Fig. 5). Actually, since the underlying layers re-
ceive the message before the actual issue of the receive call
in user program, we put all receives at the end of each send-
compute-receive triplet. In a similar way, we perform all
sends at the begining of the above triplet, so that all sends
are initiated the earliest possible time.

It seems that the initial preparation of both receive and
send MPI system buffers is an unavoidable computation
time. However, with the aid of a DMA engine, or so, the
copy of the data to be sent to the kernel buffer, or the copy

of the received data from the kernel buffer to the receive
MPI buffer can be overlapped with computations. In ad-
dition to this, for long messages, transmission time is also
of additional overhead, which can be also overlapped. An
ideal scheme is shown in Fig. 3b and the respective analysis
for each time step in Fig. 4b. If we ideally assume send and
receive overlapping too (e.g. DMA support for multichan-
nel I/O), then Fig. 3c shows the time compaction achieved.

According to the above, we have:

T = P (g)max(A1 +A2 +A3; B1 +B2 +B3 +B4) (4)

since the time hyperplane is so, that either computation or
overlapped communication prevails. As shown in Fig. 4,

A1: time for the MPI system to fill the MPI buffer for
send operation (T (send)

fill MPI buffer),
A2: time for computation (Tcompute),
A3: time for the MPI system to fill the MPI buffer for

receive operation (T (receive)
fill MPI buffer),

B1: time to receive data (receive side) (Treceive),
B2: time for the OS kernel to fill a kernel buffer for re-

ceive operation (T (receive)
fill kernel buffer),

B3: time for the OS kernel to fill a kernel buffer for send
operation (T (send)

fill kernel buffer),

6

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

B4: time to transmit data (send side) (Ttransmit).
We assume that the overall transmission is splitted into the
sender side transmission time and the receiver side receive
time, B4 and B1, respectively. From experimental results
using MPICH (see Section 5), we derived that all Ai; Bi

depend on the size g, thus Ai(g); Bi(g). In the overlapping
case, the optimalP (g) is given by 2uS1+2uS2+: : :+2uSi�1+
2uSi+1 + : : : + 2uSn + uSi , where (uS1 ; u

S
2 ; : : : ; u

S
n) are the

coordinates of the “last tile” of the tiled space JS , assum-
ing (0; 0; : : : ; 0) are the coordinates of the first tile and i is
the largest dimension (see [1]). We have the following two
cases:

1. the non-avoidable initial startup time for all sends and
receives plus the net computation time are bigger than
the rest communication and transmission time:

If A1 + A2 + A3 > B1 + B2 + B3 + B4 then (4)
becomes:

T (g) = P (g)(A1 +A2 +A3) (5)

From LEMMA 1 in [4], it holds P (g) = P0g
�1=n, thus

we have T (g) = P0g
�1=n(A1+A3+ gtc)) T (g) =

P0(A1(g) +A3(g))g
�1=n + P0tcg

n�1

n . We obtain the
optimal overall time when T 0(g) = 0. In Section 5 we
use the experimental values for g, since there isn’t any
analytical formula for A1(g), A3(g).

2. the non-avoidable initial startup time for all sends and
receives plus the net computation time are less than
than the rest communication and transmission time:

If A1 + A2 + A3 > B1 + B2 + B3 + B4 then (4)
becomes:

T (g) = P (g)(B1 +B2 +B3 +B4)

As in [4], transmission time is B1 = B4 =
bttV0g

n�1

n and thus T (g) = P0g
�1=n(B2(g) +

B3(g)+2bttV0g
n�1

n)) T (g) = P0(B2+B3)g
�1=n+

2P0bttV0g
n�2

n . We obtain the optimal overall time
when T 0(g) = 0.

Example 2
The pipelined data flow in the overlapping case works as follows
(Fig. 2): Data computed from processor P2 at k � 1 time step,
are send to P3 during k time step, received by P3 in the same
k time step, and then computed during k + 1 step, from the
same processor. Next, at k + 2 time step, processor P3 sends the
previously computed results to P4, to be received until the end of
the k + 2 step.

Example 3
Consider the algorithm of Section 3 where now the optimal
scheduling vector is (1; 2). As we will see in Section 5, a re-
alistic assumption can be that of Tfill MPI buffer = 1

2
ts, and

Tfill MPI buffer + Tfill kernel buffer = Tstartup we have one
send and one receive in each time step along i2 dimension. The
schedule length now is P = �(999; 99) � �(0; 0) + 1 =

999+2�99+1 = 1198. SinceB1+B2+B3+B4 = 50tc+50tc+

20�0:4�0:8tc < A1+A2+A3 = 50tc+50tc+100tc, the total
execution time is now 1198(25tc +25tc+100tc) = 179700tc =

0:24 secs, much less than the nonoverlapping case (0:4 sec). If
we adjust g so that A1 + A2 + A3 = B1 + B2 + B3 + B4,
thus complete overlapping, we could achieve a much better result.
It is obvious that a greater g would increase the ammount of data
needed to be communicated and reduce the number of hyperplanes
P (g), while also increasing gtc. On the other hand, a smaller g
would decrease the ammount of data needed to be communicated
and increase the number of hyperplanes P (g), while also decreas-
ing gtc. In Section 5 we experimentally tune tile size g to reach
optimal result for the overall completion time.

5 Experimental results

We run our experiments on cluster with 16 identical
500MHz Pentium nodes. Each node has 128M of RAM
and 10G hard drive and runs Linux with 2.2.14 kernel ver-
sion. We used MPI (MPICH) to run the experiments over
the FastEthernet.

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

������������
������������
������������
������������
������������
������������

������������
������������
������������
������������
������������
������������

��������
��������
��������
��������

����������

�������
�������
�������
�������

����
����
����
����

����
����
����
����

��
��
��
��

��
��
��
��

receive(from_proc(i−1,j), k+1)
receive(from_proc(i,j−1), k+2)receive(from_proc(i,j−1), k+1)
receive(from_proc(i−1,j), k+2)

send(to_proc(i+1,j), k−1)
send(to_proc(i,j+1), k−1)

send(to_proc(i+1,j), k)
send(to_proc(i,j+1), k)

k−1 k k+1

TIME

receive(from_proc(i−1,j), k)
receive(from_proc(i,j−1), k)

send(to_proc(i+1,j), k−2)
send(to_proc(i,j+1), k−2)

compute(proc(i,j), k−1) compute(proc(i,j), k) compute(proc(i,j), k+1)

k

j

i

receive(from_proc(i,j−1), k+1)

receive(from_proc(i−1,j), k+1)

send(to_proc(i+1,j), k−1)

send(to_proc(i,j+1), k−1)

send(to processor, time produced)
receive(from processor, time to be used)

Figure 6. Timing and extra buffering for the
overlapping case

Our test application is a simple loop with only one as-
signment statement i.e. A(i; j; k) =

p
A(i� 1; j; k) +p

A(i; j � 1; k) +
p
A(i; j; k � 1). We used square roots

and floats to increase tc at a reasonable value. The opti-
mal tiling is in rectangular tile shapes. Each tile is a cube

7

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

with ij, ik and kj sides. We selected k dimension to be the
largest one, so all tiles along k-axis are mapped to the same
processor Pi; i = (0; : : : ; 15). During each time step, ev-
ery processor in the ij plane with coordinates (i; j) receives
from neighboring processors (i� 1; j) and (i; j � 1), com-
putes and sends to processors (i + 1; j),(i; j + 1) In order
to achieve overlapping of computation and communication,
we need extra space, besides the tile space, on each node in
order to buffer the surfaces that are received or being sent
to every neighboring node, while changing the data during
the computation of (i; j; k) tile (Fig. 6).

The most common message-passing primitives are called
blocking primitives (synchronous primitives). When a pro-
cess calls a send routine, it specifies a buffer and a desti-
nation to send it to. While the message is being sent, the
sending process is blocked (i.e. suspended). The instruction
following the call to send is not executed until the message
has been completely sent, as shown in Fig. 7. Similarly, a
call to receive does not return control until a message has ac-
tually been received and put in the message buffer, pointed
to by the parameter of the receive call.

Time

send initiated Trap to kernel,

to OS kernel buffer

Return from trap

msg is copied
to MPI buffer

Process running

msg is copied

Process
blocked

Process running

Figure 7. Blocking send primitive

An alternative to blocking primitives are nonblocking
primitives (sometimes called asynchronous primitives). If
send is nonblocking, it returns control to the caller imme-
diately, before the message is sent. The advantage of this
scheme (Fig. 8) is that the sending process can continue
computing in parallel with the message transmission, in-
stead of having the CPU go idle

Time

send initiated Trap to kernel,

to OS kernel buffer

Return from trap

msg is copied
to MPI buffer

Process running

msg is copied

Process
blocked

Process running

Figure 8. Nonblocking send primitive

The send part of the receive-compute-send triplet (Fig. 4)
is divided to the startup part and the transmission part.
The startup part itself can be divided to the writing of
MPI buffer on behalf of the MPI Send command and the

0.1

0.2

0.233923

0.3

0.376637

0.4

0.5

0.6

0.7

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

Ti
m

e
(s

ec
)

Tile Height

min blocking time @ 586

min nonblocking time @ 444

min blocking time @ 586

min nonblocking time @ 444

min blocking time @ 586

min nonblocking time @ 444

"blo_16x16x16384"
"nonblo_16x16x16384"

Figure 9. Results for 16x16x16384 space

reading of the MPI buffer on behalf of the kernel. That
means that the white part of the unfolded triplet can be
overlaped. So we increase the Tcompute part and try to

fit the Treceive; T
(receive)
fill kernel buffer ; T

(send)
fill kernel buffer and

Ttransmit parts under the T
(send)
fill MPI buffer; Tcompute and

T
(receive)
fill MPI buffer parts.

The pseudocode for the blocking case is:

for i = 0 to max_i_tile-1
for j = 0 to max_j_tile-1
ProcB(i,j)

where: ProcB(i, j) is

for k = 0 to max_k_tile-1
{
MPI_Recv(T(i-1, j), results(T(i-1, j), k))
MPI_Recv(T(i, j-1), results(T(i, j-1), k))
compute();
MPI_Send(T(i+1, j), results(T(i, j), k))
MPI_Send(T(i, j+1), results(T(i, j), k))

}

While the pseudocode for the nonblocking case is:

for i = 0 to max_i_tile-1
for j = 0 to max_j_tile-1
ProcNB(i,j)

where: ProcNB(i,j) is

for k = 0 to max_k_tile-1
{
MPI_Isend(T(i+1, j), results(T(i, j), k-1), &s1)
MPI_Isend(T(i, j+1), results(T(i, j), k-1), &s2)
MPI_Irecv(T(i-1, j), results(T(i-1, j), k+1), &r1)
MPI_Irecv(T(i, j-1), results(T(i, j-1), k+1), &r2)
compute();
MPI_Wait(s1);

8

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

0.4

0.467927
0.5

0.6

0.694516

0.8

0.9

1

1.2

1.4

1.6

1.8

0

50
0

10
00

15
00

20
00

25
00

30
00

35
00

40
00

45
00

50
00

Ti
m

e
(s

ec
)

Tile Height

min blocking time @ 800

min nonblocking time @ 538

min blocking time @ 800

min nonblocking time @ 538

min blocking time @ 800

min nonblocking time @ 538

"blo_16x16x32768"
"nonblo_16x16x32768"

Figure 10. Results for 16x16x32768 space

MPI_Wait(s2);
MPI_Wait(r1);
MPI_Wait(r2);
}

The experiments were concerning a 16 � 16 � 16384
space, a 16�16�32768 and a 32�32�4096 space, where
A � B � C represent the boundaries of i; j; k axes respec-
tively. The tiled space will have k as larger dimension, so
mapping all tiles to the same processor is performed along
the k-axis. For every of the above three problems, we were
using all 16 processors, that is 4 processors for each i; j di-
mension. This means that all tiles, for example in the first
case, were having sizes of 4�4�V where V was a variable
(V is denoted as tile height, since it is the size of tile along
axis k). For all possible values of V , ranging from 4 to
32768
4 , we ran both complete non overlapping and overlap-

ping MPI programs, and calculated the size of Voptimal for
which the minimum completion time (toptimal) is achieved.
Figures 9, 10 and 11 summarize our results.

We compare the experimental results with the theoretical
ones calculated from formula (5). From the analysis of Sec-
tion 4, the optimal grain for the overlapping case depends
on the tc for each iteration of the initial Jn and Tstartup. To
calculate the tc we ran 1000 iterations of the loop in a single
node, and calculated the overall time. By dividing it to the
number of iterations, we calculated tc = 0:441�sec. Actu-
aly, from formula (5), we also need the Tfill MPI buffer

for both MPI non blocking sends and receives. For the
calculation of Tfill MPI buffer we wrote a simple pro-
gram with 10.000 successive non blocking sends from the
one node to another using immediate (MPI Ireceive), so
that the receiver posts the receives without causing any de-

0.1

0.2
0.219059

0.3
0.324069

0.4

0.5

0.6

0.7

0.8

0

50
0

10
00

15
00

20
00

25
00

Ti
m

e
(s

ec
)

Tile Height

min blocking time @ 128

min nonblocking time @ 164

min blocking time @ 128

min nonblocking time @ 164

"blo_32x32x4096"
"nonblo_32x32x4096"

Figure 11. Results for 32x32x4096 space

lays. Each time, the size of the message sent was equal to
the data transmitted from one tile to another, for tile sizes
4x4xVoptimal. We used (MPI Isend) for the send primitive.
This was done to simulate, as close as possible, the behav-
ior of the Tfill MPI buffer in the complete program. As
far as the tile size is concerned, we use the optimal size we
obtained from the experiments. At last, we need the number
of hyperplanes for the particular tile size. This is calculated
by the expression: P (g) = 2� imax+2� jmax+

kmax

Voptimal
.

For the first experiment (Fig 12i) the iteration space Jn

is f(i; j; k)j0� i< 16; 0� j < 16; 0�k<16384g, the re-
spective tiled space JS is fiS; jS ; kS j 0� iS<4; 0� jS<

4; 0�kS<V g, where V ranges from 4 to 16384
4 . From the

experimental results (see Fig. 9), the optimal overall com-
pletion time is achieved for gexperimental = 4�4�444,
thus Vexperimental = 444. For the first experiment, we
use a packet size of 7104 bytes for ij or ik tile sides when
V = 444, to calculate Tfill MPI Buffer = 0:627msec,
and tc is equal to 0:441�sec. The respective optimal
completion time was found to be 0:233923 sec. On the
other hand, if we calculate the number of hyperplanes
P (g) corresponding to gexperimental = 4�4�444, it is
P (gexperimental) = 2� 4 + 2� 4 + 16384

444 � 53. We
assume that Tfill MPI buffer for MPI Irecv is the same
as for MPI Isend. If we apply the experimental values
for the parameters g; tc; Tfill MPI buffer to (5), the the-
oretical overall completion time for the overlapping case is
P (gexperimental) � (4 � 0:617 + gexperimental�0:441�
10�3)msec = 0:24sec, which differs to the overall exper-
imental measured completion time 2.5%. Notice in Fig 9
that the optimal completion time for the non-overlapping
case is 0:376637sec. Thus the overlapping technique offers

9

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

a 30% improvement in total execution time. The results for
the other two experiments are shown in Fig 12 ii; iii.

i ii iii

index set size
(i � j � k)

16 � 16 � 16384 16 � 16 � 32768 32 � 32 � 4096

Voptimal 444 538 164
goptimal 7104 8608 10996
toptimal

overlapping
experimental

0.233923 sec 0.467929 sec 0.219059 sec

Tfill MPI buf 0.627 msec 0.745 msec 0.37 msec
P (g) 53 76 41
toptimal

overlapping
theoretical

0.24 sec 0.507 sec 0.25 sec

difference
experimental vs.
theoretical

2.5% 7% 12%

toptimal

non-overlapping
experimental

0.376637 sec 0.694516 sec 0.324069 sec

improvement
overlapping vs.
non-overlapping

38% 33% 32%

Figure 12. Experimental Results

6 Conclusions – Future Work

In this paper we proposed a novel approach for the
problem of minimizing the completion time for loop tiles
by overlapping computation and communication for each
tile execution. Experimental results have shown that the
theoretically calculated overall time, following the opti-
mal hyperplane transformation, is very similar to the ex-
perimental results. What remains open is an analytical
expression for Ai(g) and Bi(g) so that we can calculate
goptimal from the parallel architectures internal character-
istics (tc; tt) and MPI internal communication latencies.
Furthermore, modern hardware capabilities (DMA engines,
parallel I/O, NICs) are not fully exploited by the overly-
ing software layers (OS drivers). We plan to use a DMA
enabled driver with SCI to concurrently send and receive
while the CPU computes.

7 Acknowledgements

This work was partially funded by the Ministry of Devel-
opment, General Secretariat for Research and Technology,
project PENED 99ED308.

References

[1] T. Andronikos, N. Koziris, G. Papakonstantinou, P.
Tsanakas, Optimal Scheduling for UET/UET-UCT

Generalized N-Dimensional Grid Task Graphs, Jour-
nal of Parallel and Distributed Computing, vol. 57, no.
2, pp. 140–165, May 1999.

[2] P. Boulet, A. Darte, T. Risset, Y. Robert, (Pen)-
ultimate tiling?, INTEGRATION, The VLSI Jounal,
volume 17, pp. 33-51, 1994.

[3] I. Drossitis, G. Goumas, N. Koziris, G. Papakonstanti-
nou, P. Tsanakas, Evaluation of Loop Grouping Meth-
ods based on Orthogonal Projection Spaces, in Pro-
ceedings of the 2000 Int’l Conference on Parallel Pro-
cessing, pp. 469–476, Toronto, Canada, Aug. 2000.

[4] E. Hodzic, W. Shang, On Supernode Transformation
with Minimized Total Running Time, IEEE Trans. on
Parallel and Distributed Systems, vol. 9, no. 5, pp.
417–428, May 1998.

[5] E. H. Hollander, Partitioning and Labeling Loops by
Unimodular Transformations, IEEE Trans. on Parallel
and Distributed Systems, vol. 3, no. 4, pp. 465–476,
Jul. 1992.

[6] F. Irigoin, R. Triolet, Supernode Partitioning, Proc.
15th Ann. ACM SIGACT-SIGPLAN Symp. Princi-
ples of Programming Languages, pp. 319–329, San
Diego, California, Jan 1988.

[7] P. Tsanakas, N. Koziris, G. Papakonstantinou, Chain
Grouping: A Method for Partitioning Loops onto
Mesh-Connected Processor Arrays, IEEE Trans. on
Parallel and Distributed Systems vol. 57, no. 2, pp.
941–955, Sep. 2000.

[8] J. Ramanujam, P. Sadayappan, Tiling Multidimen-
sional Iteration Spaces for Multicomputers, Journal of
Parallel and Distributed Computing, vol. 16, pp.108–
120, 1992.

[9] W. Shang, J.A.B. Fortes, Independent Partitioning of
Algorithms with Uniform Dependencies, IEEE Trans.
Comput., vol. 41, no. 2, pp. 190–206, Feb. 1992.

[10] W. Shang, J.A.B. Fortes, Time Optimal Linear Sched-
ules for Algorithms with Uniform Dependencies, IEEE
Trans. Comput., vol. 40, no. 6, pp. 723–742, June
1991.

[11] J. Xue, Communication-Minimal Tiling of Uniform
Dependence Loops, Journal of Parallel and Distributed
Computing, vol. 42, no.1, pp. 42–59, 1997.

[12] J. Xue, On Tiling as a Loop Transformation, Parallel
Processing Letters, vol.7, no.4, pp. 409–424, 1997.

10

0-7695-0990-8/01/$10.00 (C) 2001 IEEE

