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Abstract. In this paper we propose several alternative methods for the compile
time scheduling of Tiled Iteration Spaces onto a cluster of SMP nodes with a
fixed number of nodes. We elaborate on the distribution of computations among
processors, provided that we have chosen either a non-overlapping communica-
tion mode, which involves successive computation and communication steps, or
an overlapping communication mode, which supposes a pipelined, concurrent
execution of communication and computations. In order to utilize the available
processors as efficiently as possible, we can either adopt a cyclic assignment
schedule, or assign neighboring tiles to the same CPU, or adapt the size and
shape of tiles to the uderlying architecture size. We theoretically and experi-
mentally compare four different schedules, so as to design one which achieves
the minimum total execution time, depending on the cluster configuration, the
internal characteristics of the underlying architecture and the iteration space
size and shape. Experimental results in a small Linux cluster of SMP nodes, us-
ing the GM library over the Myrinet high performance interconnect, illustrate
the merits and drawbacks of each approach.

1 Introduction

One of the most intriguing areas in the field of parallel computing is the efficient
mapping of loop iterations onto a parallel system, taking into account its architectural
internal characteristics. In order to achieve maximum acceleration of the final program,
one of the key issues to be considered is minimization of the communication overhead.
Among other solutions given in the literature, researchers have dealt with this problem
by applying the supernode or tiling transformation. Supernode partitioning of the
iteration space was proposed by Irigoin and Triolet in [13]. They introduced the initial
model of loop tiling and gave conditions for a tiling transformation to be valid. Later,
Ramanujam and Sadayappan in [19] showed the equivalence between the problem of
finding a set of extreme vectors for a given set of dependence vectors and the problem of
finding a tiling transformation H that produces valid, deadlock-free tiles. The problem
of determining the optimal shape was surveyed, and more accurate conditions were
also given by others, as in [22], [5], [11], [12].

Nevertheless, all above approaches do not investigate an ideal execution scheme in
order to reduce the overall tiled space completion time. Hodzic and Shang [10] proposed



a method to correlate optimal tile size and shape, based on overall completion time
reduction. Their approach considers a straightforward execution scheme, where each
processor executes all tiles along a specific dimension, by interleaving computation and
communication phases. In [9] we proposed an alternative method for the problem of
scheduling the tiles to single CPU nodes. Each atomic tile execution involves a commu-
nication and a computation phase and this is repeatedly done for all time planes. We
compacted this sequence of communication and computation phases, by overlapping
them for the different processors. The proposed method acts like enhancing the per-
formance of a processor’s datapath with pipelining [18], because a processor computes
its tile at k time step and concurrently receives data from all neighbors to use them at
k + 1 time step and sends data produced at k — 1 time step.

In [4] we extended the method proposed in [9] for executing Tiled Iteration Spaces
in SMP nodes (Symmetric MultiProcessors). We grouped together neighboring tiles
along a hyperplane. Hyperplane-grouped tiles are concurrently executed by the CPUs
of the same SMP node. In this way, we eliminate the need for tile synchronization and
communication between intranode CPUs. As far as scheduling of groups is concerned,
we take advantage of the overlapping execution scheme of [9] in order to “hide” each
group communication volume within the respective computation volume. Under the
above execution scheme, the iteration space involves the overlapped execution of com-
munication and computation phases between successive groups of tiles. We thus avoid
most of the communication overhead by allowing for actual computation to communi-
cation overlapping.

However, the proposed schedule assumes the availability of an unlimited number of
SMP nodes. In [3] Andronikos et al. have proposed an assignment scheme onto a fixed
number of nodes, however the complexity of evaluating which tiles should be assigned
to which node is too high. In [6], [7] Boulet et al. and Calland et al. have theoretically
proven the optimality of a cyclic assignment of 2-dimensional tiles onto a fixed number
of single CPU nodes. On the other hand, Manjikian and Abdelrahman have presented
in [16] an alternative method for scheduling Tiled Iteration Spaces onto a fixed number
of SMP nodes, without taking into account that there is no need for communication
among CPUs of the same SMP node, since the data required are located in the node’s
shared memory.

In this paper, we propose four different methods for scheduling tiled iteration spaces
onto an existing clustered system with a fixed number of SMP nodes: the cyclic as-
signment schedule, the mirror assignment schedule, the cluster assignment schedule
and the retiling schedule. Firstly, we adapt the method proposed in [4] for a cluster
of SMPs with a fixed number of nodes. We discuss the approaches of [6], [7], [16] and
generalize them for n-dimensional Spaces, taking into account the particularity of im-
mediate exchange of data among CPUs of the same SMP node. In addition, we apply
to all four schedules, two alternative execution schemes, the overlapping [9] and the
non-overlapping [10] communication scheme and we discuss the merits and drawbacks
of each combined approach.

The rest of this paper is organized as follows: In Section 2 we provide the mathe-
matical background and terminology used throughout the paper and we briefly revise
concepts, such as grouping transformation, described in our previous work. In Section



3 we adapt the theory proposed in [4] for a fixed number of SMP nodes, using four
different mapping methods. In Section 4 we use some exemplary Iteration Spaces, so
as to experimentally delve into the advantages of each schedule. We deduce that our
experimental results strongly confirm our theory. Finally, in Section 5 we summarize
our conclusions.

2 Algorithmic Model - Grouping Transformation

Our proposed method can be applied to any code segment which can be transformed
into a Tiled Iteration Space. However, without lack of generality, in this paper our
model consists of perfectly nested FOR-loops with uniform data dependencies, as in
4 [9.

Throughout this paper, the following notation is used: N is the set of natural
numbers, n is the number of nested FOR-loops of the algorithm. J"* C Z™ is the set
of loop indices: J™ = {j(j1, .-, Jn)|Ji € Z ANl; < j; <u;,1 <i < n}. Each point in this
n-dimensional integer space is a distinct instantiation of the loop body.

In a Supernode or Tiling Transformation, the Iteration space J™ is partitioned
into identical n-dimensional parallelepiped areas (tiles or supernodes) formed by n
independent families of parallel hyperplanes. Tiling transformation is defined by the
n-dimensional square matrix H. Each row vector of H is perpendicular to one family of
hyperplanes forming the tiles. Dually, tiling transformation can be defined by n linearly
independent vectors, which are the sides of the tiles. Similar to matrix H, matrix P
contains the side-vectors of a tile as column vectors. It holds P = H~!.

Formally, tiling transformation is defined as follows:

r:Z" — Zzn,r(j) = [] —1'|:IH{J|_H]J:| ,

where | Hj| identifies the coordinates of the tile that index point j(j1,7j2,---,Jjn) is

mapped to and j — H !| Hj] gives the coordinates of j within that tile relative to the
tile origin. The resulting Tile Space J is defined as follows: J = {j°|5° = |Hj|,j €
J"}. It can be also written as JS = {5S(j7,...,i5)i5 € ZAI7 <jf <u?,1<i<n},
where [, u? can be directly computed from the functions l1, ..., 0, u1,...,u, and the
tiling matrix H, as described in [1], [8].

In the rest of this paper we shall consider that the non-overlapping and overlapping
execution schemes, extensively discussed in [9] (sections 3,4), [20] and the concept of
grouping, introduced in [4] (section 4) are known.

For example, let us consider an n-dimensional rectangular Tile Space J°, whose
bounds are defined as follows: 0 < jP <wu?,i=1,...,nand u{ >uf,i=2,...,n. It
is grouped according to the matrices

1—-ms... —mn, 11 . 1
0 me ... 0 0%2 0

pé=| . . | H =@ "= : (1)
0 0 ... mp 00 ..L



Thus, a tile 55 belongs to group j¢ (E 37, |_7]7122J, ey LiJ)T Following the over-
lapping execution scheme, if there are as many SMP nodes as requ1red it will be exe-
cuted in the SMP node (j¢', ..., $) during the time step ¢ = E i< E i+ E L J

(according to the scheduling vector IT¢ = (1,1,...,1)). Thus the number of steps
required for the completion of the algorithm will be:

n n S _
Punlimitedfoverlap =1+ E (uf - 1) + E LUlmllJ =
i=1 =2

Puntimited— overlap = Z u; + Z[ ] —2n+2 (2)

Similarly, if we follow the non-overlapping execution scheme, then group j& =
n .5 .5 n
(X485 125 1,5 [2=])" will be executed during the time step t = j{* = 3 j; (ac-
i=1 " i=1

ccirding to the scheduling vector IT¢ = (1,0,...,0)). Thus, the number ofisteps re-
quired for the completion of the algorithm will be:

n
_ S
Punlimitedfnonfoverlap =1+ Z (ui - 1) =
i=1

S
Punlimited—non—overlap = E u; —n+1 (3)

i=1

3 Scheduling onto a Fixed Number of SMPs

3.1 Cyclic Assignment to SMPs

In [6], [7] the optimality of the cyclic assignment of 2-dimensional tiles onto a fixed
number of processors was theoretically proven. However, the calculations in [6], [7] did
not take into account the communication overhead involved. Generalizing this approach
for n-dimensional tiles and for clusters of SMP nodes, we consider that the available
SMP nodes form a virtual (n — 1)-dimensional mesh of ps x ... x p, = p SMP nodes.
We cyclically assign the groups to the SMP nodes. That is, we assign group 5 to the
SMP node (55 %p2, - . ., jS%pn), as indicated in Fig. 1. Therefore, each SMP node will

US U, UG UG
execute [ 2] X ...x [=-] = [22] X ... x [2=] rows of groups (where ul ]
i=2,...,n).
If the rows of groups assigned to an SMP node, are executed in lexicographic or-

der, the row (z, 5§, ..., 7$) will be executed in the SMP node (j$'%pa, - .- ,55%pn)

n . n
after ) [Vp—gj I1 [Z—E] rows, imposing a latency of uy Z [Ljpj H f;’;] time

i=2 k=i+1 ' k=i+

steps. In addition, as deduced from Fig. 1, the location of a group, relatlvely to the

n
corresponding chunk origin, is (lel, S %P2, ..., S %pn), where lel =i+ j2%mip;.
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Fig. 1. Cyclic assignment to SMPs

Therefore, if the underlying architecture allows for concurrent execution of compu-
tations and communication, following the overlapping execution scheme, group j will

.G n G
be computed during the time step () = j& + E iS%p; +uf E L]p—J IT [1;—’;] .
i =i+l

=2
Thus, the number of steps required for the completion of the algorlthm will be
Pcyclic—overlap = maXt(j ) Hllnt( ) +1=

n

Pcyclicfo'uerlap = Z |:(’U/f - 1)%mlpl + (|—

i=2

us o
- 1)%pi] +ui [T (4)

m:n;
i—o iPi

The first term of the right-hand part in formula (4) represents the time required for
filling the pipeline, while the second term corresponds to the time each processor is
busy executing calculations.

If we should do with a conventional communication architecture as node intercon-
nect (i.e. without NIC support for relieving the CPU from the communication burden),
following the non-overlapping execution scheme, group j& will be computed during the

. -G .GI S L ]G L uG .

time step t(j<) = ji" +uy > [[35] II T5:1|. Thus, the number of steps required
i=2 b ok=itl

for the completion of the algorithm will be

Pcyclicfnonfaverlap = maXt(j ) mlnt( ) +1=

n

Pcyclicfnonfaverlap = Z I:('sz - 1)%mlp7, + uy H|—

=2

5
zpz ( )
3.2 Mirror Assignment to SMPs

Let us consider another schedule, if we assign the tiles to SMP nodes as indicated in
Fig. 2. That is, we assign group j& to the SMP node

( 3§ %p2 if even(j§ /p2) iS$%p, if even(j§ /pn) )
(p2 — 1) — 3§ %ps if odd(j§ [p2)"" """ (pn — 1) — j$%py if 0dd(j§ [pn)
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Fig. 2. Mirror assignment to SMPs

This schedule has the advantage that there is no need for data transfer along the

boundaries of chunks of tiles, thus less time is wasted for communication.
Then, like the cyclic assignment schedule, if the chunks of groups are executed in

lexicographic order, the chunk containing row (z,55,...,7%) will be executed after
n .G n G

Ji Uy H .
i:§ . |_p—lJ 7H 1|'p’;c ]] chunks. The latency imposed by each of the previous chunks,

when combining the mirror assignment schedule with the overlapping execution scheme,
is greater than the respective one when applying the cyclic assignment schedule. It,

thus, equals to uy + 3 [(m; + 1)p;] — 2n + 2, as the computation of a whole chunk

=2
should be finished before the computation of the next chunk starts. In addition, as
deduced from Fig. 2, the position of a group, relatively to the corresponding chunk
n
origin, is (jC',jS%ps, ..., j%py), where j&' = j5 + 3 jiS%mup;. Therefore, group
=2
§¢ will be computed during the time step

05 = 36"+ 3 i [uF + 3 [oms+ Dpd 20 +2] 35 lL“ ) I

the number of steps required for the completlon of the algorlthm will be

Pmirror—overlap = maXt(jG) mlnt( ) +1=

. Thus,

n

Pmirrorfoverlap = E |:(u1.S - 1)%m1pl + (

=2

’,‘ns] - 1)%pi] - i [(mi + 1)p;] +2n — 2+
n i (6)
+ [uf + Z) [(m:i + 1)pi] — 2n + 2] [1775-1



If there is no shortage of processors (u < m;p;, Vi = 2,...,n), the proposed sched-
ules are equivalent. Otherwise, it can be easily deduced from (4),(6) that Peycric—overtap <
Prirror—overtap- Their difference is due to the fact that, following the mirror assignment
schedule, every time the computation of a chunk finishes and the computation of the
next one starts, there are some idle time steps for some of the processors, as indicated
in Fig. 2. The cyclic schedule is thus preferable to the mirror one.

Similarly, following the non-overlapping execution scheme, group j¢ will be com-

. . .G el S T n j-G L el
puted during the time step t(j) = ji" + (u7 + > mipi—n+1) 3 |[55] 1T 3511
i=2 i=2 k=it+1
Thus, the number of steps required for the completion of the algorithm will be
Pmirrorfnanfoverlap - maXt(jG) - mlnt(JG) + 1=

Pmirrorfnonfoverlap = Z I:(uf - 1)%m1pl:| - Z m;p; +n— 1+
o . 2 ™
+|uf + Y mipi —n+ 1] T[]
=2 =2

It can be deduced from (5);(7) that Pcyclicfnonfoverlap S Pmirrorfnanfoverlap- How-
ever, since the communication overhead is not hidden under the computation time, this
schedule may sometimes result in a shorter total execution time, due to better exploita-
tion of the available bandwidth. In particular, if there are only two SMP nodes along
a dimension, no SMP node should both send and receive data along that dimension.
Thus, the communication overhead will be halved.

3.3 Cluster Assignment to SMPs

"GROUPS" "TILES"
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Fig. 3. Cluster assignment to SMPs

Alternatively, following the approach of [16], generalizing it for n-dimensional spaces
and taking into account that there is no need for communication among processors of
the same SMP node, we may assign neighboring rows of tiles to the same CPU, as



indicated in Fig. 3. In order to achieve this schedule, we cluster together neighboring
tiles (jls,jff, ...,72), mapping them to a supertile or “TILE” labeled as (j{, |_[ u2 ]J

L[ In ]J) Thus, the corresponding “GROUP” will be ¢ = (j; + ZL ]l IE

mMnPn

sz

L]#usj, - L[Jifsj) and, following the overlapping execution scheme, it will
ma | 72-1 Mnl o
n .S
be executed during the time “STEP” #(j°) = ]J ZQL%J As a
p =2 m milpi

((TILE”

] tiles, a “STEP” will be equivalent to

(excluding the DMA 1n1t1ahzat10n and synchronization time). Thus the total number
of steps required for the completlon of the algorithm will be

mp](maxt(j) min¢(5°) + 1) =

Pcluster overlap —

=2

Pcluster—overlap = ﬁ [T:ziz] ( —2n+2+ Z|— -| + i {%]) (8)

i=2 m;[

m;ip;

Lemma 1. It holds that Pcyclic—overlap < Pcluster—overlap-
Proof: Omitted due to lack of space. -

Thus, this schedule results to a worse number of execution steps than the previous
one. Their difference is due to the fact that, in this schedule, the filling of the pipeline is
slower. In case that uf >> u? (i = 2,...,n), the time each processor is busy, outflanks
the pipeline filing time and it holds that Peyciic—overiap =~ Peluster—overiap- However,
the previous mathematical lemma has not taken into consideration the time required
for the initialization of messages and for synchronization. Since the cluster assignment
schedule requires less messages to be sent and less synchronization, in some cases it
may be practically proven more efficient, as we will show in §4.

Similarly, following the non- overlapplng execution scheme, tile (j7,j5,...,j5), cor-
- S :S
responding to “GROUP” ;¢ = (j; + ZL i Il—— |, | —22—]) is exe-
o | m2(m1 ma [

cuted during the time “STEP” #(j°) = j; + E L pP”

(WJ

7 s
equivalent to less than [] [T:_ip_] communication substeps. In particular, if the commu-

1=

nication load is equal along all communication dimensions (as resulted by the method
proposed in [22]), the amount of data to be transferred, as indicated in Fig. 4, is
H |—mipi—| E u < H r:
=2 i=2 (n—1) ’Vmilpi 1 =2
the total number of steps required for the completion of the algorithm will be

the communication load of a tile. Thus,
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Fig. 4. Clustering communication

Peiyster—non—overiap = C (maxt(js) — mint(j%) + ) (where 1 < C' < H|' lpl ) =

=2

1) (9)
le ]

In conclusion, comparing to the cyclic assignment schedule, this method has the
drawback of slower pipeline filling. However, it results to less communication over-
head, which significantly reduces the total execution time, especially when the non-
overlapping execution scheme is applied.

Pcluster—non—overlap =C (Ul -n+1+ Z|—
=2 [

3.4 Retiling
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Fig. 5. Retiling

A more efficient schedule can be obtained, if we adapt the size of tiles to the available
number of SMPs (Fig. 5). That is, we retile the initial Iteration Space so as to get

s _ :
u? =mp;, (1 =2,...,n) and u¥’ = uf

9

h mp
i=2



equal to the size of an “old” tile and, consequently, a “new” computation step will be
equivalent to an “old” computation step. Following the overlapping execution scheme,

the number of time steps required for the completion of the algorithm, according to
n n st

the formula (2), will be Presite—overtap = 3 uf + 2 [%-] —2n+2 =

i=1 =2

i
n

n s
Pretile—overlap = Z [(mz + l)pz] —2n+2+ Uf 1:[2 e (10)

i=9 mipi

Using the non-overlapping execution scheme, the number of time steps required for
the completion of the algorithm, according to the formula (3), will be

n
— s’
Pretile—non—overlap - E uy —n+ 1=
i=1

(11)

n n s

— S Ui

Pretile—non—overlap = Z mip; —n+1+ Uy H milpi
=2 =2

From (5);(11); we can deduce that Pretilefnonfoverlap S Pcyclicfnonfoverlap- In addi-
tion, a “new” computation substep is equivalent to an “old” computation substep,
but a “new” communication substep is equivalent to less than an “old” communication
substep. In particular, as in the cluster assignment schedule, if the communication load
is equal along all communication dimensions, the amount of data to be transferred is
n
L —— < 1 times the communication load of an “old” tile.

i=2 (nfl)ml_i -

In conclpusion, in every case this schedule is preferable to previously proposed ones,
assuming that there are no factors constraining the tile shape, such as false sharing,
or cache locality [14], [15], [21]. It can fully exploit the computational power of all the
SMP nodes and it achieves a perfect load balance, without imposing any additional
complexity to the initial schedule. But if, apart from parallel scheduling, there are
other factors constraining the tile size and shape, this schedule will be proven to be

inefficient, since it totally reorganizes the execution order of iterations.

4 Experimental Results

4.1 Experimental Platform

In order to evaluate the proposed methods, we use a Linux SMP cluster with 2 identical
nodes. Each node has 1GB of RAM and 2 Pentium III @ 1266 MHz CPUs. The cluster
nodes communicate through a Myrinet high performance interconnect, using the GM
low level message passing system.

In order to utilize the available processors in each SMP node as efficiently as pos-
sible, our implementation uses one multi-threaded process per SMP, with the number
of threads equal to the number of CPUs. Multithreading support is based on the Lin-
uxThreads library. Threads executing on the same SMP communicate using shared
memory, eliminating the need for message passing. For the data exchange between pro-
cesses executing on different SMPs, Myricom’s GM version 1.6.3 is used [17]. GM is a



low-level message passing library for Myrinet. It comprises a library used by userspace
programs, an OS driver (in our case, a Linux kernel module) and a Myrinet Control
Program (MCP), which is executed on the LANai, the embedded RISC microprocessor
on the Myrinet NIC. The GM driver is used during the execution of a userspace process
to open and close ports and to allocate and free memory suitable for DMA transfers.
A port is a communication endpoint, used as the interface between a userspace pro-
cess and the NIC. Having opened a port, a process can communicate directly with the
NIC without the need for system calls, bypassing the operating system. Thus, all data
exchange is performed directly to and from userspace buffers.

To provide flow control between the host and the NIC, sending and receiving mes-
sages is regulated by tokens. Initially, a process possesses a finite number of send and
receive tokens. To be able to receive a message, the process must provide GM with a
buffer in DM Aable memory, relinquishing a receive token. When a message is received,
the DMA engine on the Myrinet NIC places it directly into the userspace buffer. The
process polls for new messages and retrieves the receive token when a message arrives.
The same applies to sending messages: The process relinquishes a send token by re-
questing the transmission of a message from a userspace buffer, then retrieves it when
the send operation completes and an appropriate send completion callback function
is executed by GM. As the data exchange between the host memory and the NIC is
undertaken by the DMA engine on the NIC, without involving the CPU, overlapping
of communication with computation is possible.

4.2 Experimental Data

We performed several series of experiments in order to evaluate and compare the prac-
tical speedups obtained using each one of the four alternative schedules, combined with
both the alternative execution schemes. Our test application code was the following;:

for (i=1; i<=X; i++)
for(j=1; j<=Y; j++)
for(k=1; k<=Z; k++)
ATi1[j] [k]1=func(A[i-11[j] k],
ATi10j-11[k]1,A[i1 (3] [k-11);

where A is an array of X x Y x Z floats and X,Y << Z. Without lack of generality, we
consider, as a tile, a rectangle with ij, ¢k and jk sides. The dimension k is the largest
one, so all tiles along the k-axis are mapped onto the same processor, as proposed in
[2], [9]. Each tile has i, j dimensions equal to z and k dimension equal to z. Thus, there
are % tiles along dimension ¢, % tiles along dimension j and % tiles along dimension
k.

After implementing all four schedules in combination with both execution schemes,
as described by the pseudo-code of Table 1, we measured the performance of all sched-
ules and compared it with their theoretically expected performance. For various tile
sizes, we conducted a series of experiments for each combination of schedule and execu-
tion scheme, varying the iteration space size. In Figs 6-8 we have plotted our experimen-
tal results along with the respective theoretical curves. As a measure of performance,



Table 1. Execution Schemes Implementation

|N0n Overlapping Execution Scheme| Overlapping Execution Scheme
Pre-computation Part of Communication
gm_provide_receive buffer() If on first tile
do Execute a non-overlapping receive
poll the GM event queue gm_provide receive buffer() for tile (¢1 + 1, ¢2,t3)
process the event gn_send with callback() for tile (t; — 1,t2,t3)

until data received

Post-computation Part of Communication

gm_send_with_callback() do
do poll the GM event queue
poll the GM event queue process the event
process the event until send & receive completed
until data sent Barrier for Threads in SMP
Barrier for Threads in SMP If on last tile

Execute a non-overlapping send

we have used the ratio of the speedup obtained to the best possible speedup. That
is, we have depicted the ratio of the speedup obtained to the number of processors
used. Thus, the closer a plot is to 1, the more efficient a schedule is. As can be seen
in Figs 6-8, the practical completion times of our experiments differ to our theoretical
predictions by at most 3%. For the overlapping communication schedules, this can be
attributed to both the DMA engine on the Myrinet NIC and the CPU trying to access
data in memory simultaneously.

Non Overlapping Execution Scheme Overlapping Execution Scheme
1.2 T T T 1.2
retile - non-overlapping -~
retile - non-overlapping (theoretical) -—---
11 cluster - non-overlapping - . 11
cluster - non-overlapping (theoretical) - "
g 1k mirror - non-overlapping - B 5 1
a mirror - non-overlapping (theoretical) - a = - =
2 cyclic - non-overlapping —+— & e RS .-
8 = cyclic - non-overlapping (theoretical) —— ] 8 . el
g 09 Y/ pping ( ) g2 09
* - P i * ! )
g 0.8 g g 08 retile - overlapping -+~ |
2 X k] retile - overlapping (theoretical)
Q 07 B o) o 97 cluster - overlapping i
& . & : cluster - overlapping (theoretical)
mirror - overlapping
0.6 | 0.6 mirror - overlapping (theoretical) ------ -
_ cyclic - overlapping —+—
cyclic - overlapping (theoretical)
0.5 0.5 . . . L
500 1000 1500 2000 2500 3000 3500 500 1000 1500 2000 2500 3000 3500
Height of Iteration Space Height of Iteration Space

Fig. 6. Experimental Data: Tile Size 32 x 32 x 32

One can easily deduce that in almost all cases, the retiling schedule achieves the best
performance, both theoretically and experimentally. This result was expected, since
the retiling schedule absolutely adjusts tiles to the existing configuration of a cluster.
However, in our experiments we have eliminated the effect of cache miss penalties
by using small iteration space widths. If our iteration space dimensions which are not
assigned to the same processor were too long, the retiling schedule could have destroyed
the data locality achieved by optimally selected small tiles.

Note also that the cluster assignment schedule using tile size z is equivalent to the
retiling schedule using tile size 4z. This was expected, considering that by construction
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Fig. 8. Experimental Data: Tile Size 256 x 32 x 32

the iterations executed and the data sent in these two cases are the same. What differs is
the execution order of iterations but here we have eliminated the cache misses overhead,
in order to test our schedules’ optimality and not data locality.

When following the non-overlapping execution scheme, the difference among the
performance of the four schedules is mainly due to the volume of the data to be trans-
ferred. As depicted in Fig. 9, the mirror assignment schedule involves double the com-
munication of retiling and cluster assignment schedule, while the cyclic assignment
schedule involves 6 times the same communication volume.

When following the overlapping execution scheme, since the communication volume
is hidden under computation, their difference is due to the time steps that each SMP
has to stall waiting for the required data to arrive. The number of these time steps is
the same for both the retiling and the cyclic assignment schedule. However, using the
cluster or the mirror assignment schedule, results in a multiple number of idle time
steps, as depicted in Figs 1, 2.

In addition, note that all schedules achieve better performance for long Iteration
Spaces. This is due to the fact that when the mapping dimension of the Iteration Space
is comparatively short, the time required for the last processor to start computing after
the first data have arrived, is not negligible in comparison to the total execution time.
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Fig. 9. Communication among SMPs

5 Conclusions

In this paper, we presented and experimentally compared four different methods for
scheduling Tiled Iteration Spaces onto a cluster with a fixed number of SMPs. We
concluded that the most efficient schedule is in most cases obtained when we adapt
the size and shape of tiles to the size of the underlying architecture (retiling schedule).
However, in case it is not possible, or it is not desired, since tiles are already optimally
selected considering data locality [14], [15], [21], we propose either a cyclic assignment
schedule, or clustering together neighboring tiles and handling them as a super-tile.
The cyclic approach is preferable when the communication and computation substeps
can be overlapped. In the opposite case, we propose the cluster assignment schedule,
which considerably reduces the volume of data to be transferred.
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