
Scheduling of Tiled Nested Loops onto a Cluster with a Fixed Number of SMP
Nodes

Maria Athanasaki, Evangelos Koukis and Nectarios Koziris
National Technical University of Athens

School of Electrical and Computer Engineering
Computing Systems Laboratory

e-mail: {maria, vkoukis, nkoziris}@cslab.ece.ntua.gr

Abstract

In this paper we propose several alternative methods for
the compile time scheduling of Tiled Nested Loops onto a
fixed size parallel architecture. We investigate the distribu-
tion of tiles among processors, provided that we have cho-
sen either a non-overlapping communication mode, which
involves successive computation and communication steps,
or an overlapping communication mode, which supposes
a pipelined, concurrent execution of communication and
computations. In order to utilize the available processors
as efficiently as possible, we can either adopt a cyclic as-
signment schedule, or assign neighboring tiles to the same
CPU, or adapt the size and shape of tiles, so that the re-
quired number of processors is exactly equal to the num-
ber of the available ones. We theoretically and experimen-
tally compare the proposed schedules, so as to design one
which achieves the minimum total execution time, depend-
ing on the cluster configuration, (i.e. number and type of
nodes, interconnect bandwidth, etc) the internal character-
istics of the underlying architecture (i.e. NIC and DMA la-
tencies, etc) and the iteration space size and shape.

1. Introduction

When optimizing a code segment, our main concern
should be the minimization of run time of the computation
intensive program structures, such as nested for-loops.
Nested for-loops are very usual in scientific codes using
numerical analysis (e.g. in maths, physics, image process-
ing, biology, etc.) Thus, their efficient parallelization can
vastly accelerate a great category of scientific programs.
However, in order to achieve it, we should take care not
to impose an excessive communication load. Several meth-
ods have been proposed and applied in the literature, aim-
ing at this specific problem, among which the most gen-

eral and widely used one has been “tiling”. Tiling transfor-
mation was proposed by Irigoin and Triolet in [15]. They
introduced the initial model of loop tiling and gave condi-
tions for a tiling transformation to be valid. Later, the opti-
mal tile shape has been precisely determined and more ac-
curate conditions have been given in [9, 13, 14, 21, 24].

As far as the execution of tiles on a cluster of PCs is con-
cerned, all conventional approaches [12, 21] consider that
each processor executes all tiles along a specific dimension,
by interleaving computation and communication phases.
All processors first receive data, then compute and finally
send result data to neighbors in explicitly distinct phases,
according to the hyperplane scheduling vector. Taking into
account that modern network interfaces allow for concur-
rent communication and computation, in [11] we proposed
an alternative method for the problem of scheduling the
tiles to single CPU nodes. The proposed method acts like
enhancing the performance of a processor’s datapath with
pipelining [20], because a processor computes its tile at k
time step and concurrently receives data from all neigh-
bors to use them at k + 1 time step and sends data pro-
duced at k−1 time step. Such a pipelined execution scheme
was proven [22] to nearly double the performance of the al-
gorithms, provided that we use modern NICs (Network In-
terface Cards), capable of performing communication with-
out annoying the CPU, and advanced communication proto-
cols (i.e. VIA) with Zero-Copy [8], DMA support and User-
Level [5] characteristics.

In [4] the method proposed in [11] has been extended for
executing Tiled Iteration Spaces in SMP nodes (Symmet-
ric MultiProcessors). We grouped together neighboring tiles
along a hyperplane. Hyperplane-grouped tiles are concur-
rently executed by the CPUs of the same SMP node. In this
way, we eliminated the need for tile synchronization and
communication between intranode CPUs. As far as schedul-
ing of groups is concerned, we took advantage of the over-
lapping execution scheme of [11] in order to “hide” each
group communication volume within the respective compu-

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

tation volume.
However, the proposed schedule assumes the availability

of an unlimited number of SMP nodes. In [3] Andronikos et
al. have proposed an assignment scheme onto a fixed num-
ber of nodes, however the complexity of evaluating which
tiles should be assigned to which node is too high. In [6, 7]
Boulet et al. and Calland et al. have theoretically proven
the optimality of a cyclic assignment of 2-dimensional tiles
onto a fixed number of single CPU nodes. On the other
hand, Manjikian and Abdelrahman have presented in [18]
an alternative method for scheduling Tiled Iteration Spaces
onto a fixed number of SMP nodes, without taking into ac-
count, however, that there is no need for communication
among CPUs of the same SMP node, since the data required
are located in the node’s shared memory.

In this paper, we propose four different methods for
scheduling tiled iteration spaces onto an existing clus-
tered system with a fixed number of SMP nodes: the
cyclic assignment schedule, the mirror assignment sched-
ule, the cluster assignment schedule and the retiling sched-
ule. Firstly, we adapt the method proposed in [4] for a
cluster of SMPs with a fixed number of nodes. We dis-
cuss the approaches of [6, 7, 18] and generalize them for
n-dimensional Spaces, taking into account the particular-
ity of immediate exchange of data among CPUs of the
same SMP node. In addition, we apply to all four sched-
ules, two alternative execution schemes, the overlapping
[11] and the non-overlapping [12] communication scheme
and we discuss the merits and drawbacks of each com-
bined approach.

The rest of this paper is organized as follows: In Sec-
tion 2 we provide the mathematical background and ter-
minology used throughout the paper and we briefly revise
concepts, such as grouping transformation, described in our
previous work. In Section 3 we adapt the theory proposed
in [4] for a fixed number of SMP nodes, using four differ-
ent mapping methods. In Section 4 we use some exemplary
Iteration Spaces, so as to experimentally delve into the ad-
vantages of each schedule. We deduce that our experimen-
tal results strongly confirm our theory. Finally, in Section 5
we summarize our conclusions.

2. Algorithmic model - Notation

Our proposed method can be applied to any code seg-
ment which can be transformed into a Tiled Iteration Space.
However, without lack of generality, in this paper our model
consists of perfectly nested for-loops with uniform data
dependencies, as in [4],[11].

Throughout this paper, the following notation is used: N
is the set of natural numbers, n is the number of nested for-
loops of the algorithm. Jn ⊂ Zn is the set of loop indices:
Jn = {j(j1, ..., jn)|ji ∈ Z ∧ li ≤ ji ≤ ui, 1 ≤ i ≤ n}.

Each point in this n-dimensional integer space is a distinct
instantiation of the loop body.

In a Supernode or Tiling Transformation, the Iteration
space Jn is partitioned into identical n- dimensional paral-
lelepiped areas (tiles or supernodes) formed by n indepen-
dent families of parallel hyperplanes. Tiling transformation
is defined by the n-dimensional square matrix H . Each row
vector of H is perpendicular to one family of hyperplanes
forming the tiles.

Formally, tiling transformation is defined as fol-

lows: r : Zn −→ Z2n, r(j) =

[
�Hj�

j − H−1�Hj�
]

, where

�Hj� identifies the coordinates of the tile that index point
j(j1, j2, . . . , jn) is mapped to and j − H−1�Hj� gives
the coordinates of j within that tile relative to the tile ori-
gin. The resulting Tile Space JS is defined as follows:
JS = {jS|jS = �Hj�, j ∈ Jn}. It can be also writ-
ten as JS = {jS(jS

1 , . . . , jS
n)|jS

i ∈ Z ∧ lSi ≤ jS
i ≤

uS
i , 1 ≤ i ≤ n}, where lSi , uS

i can be directly com-
puted from the functions l1, . . . , ln, u1, . . . , un and the
tiling matrix H , as described in [1, 10].

In the rest of this paper we shall consider that the
non-overlapping and overlapping execution schemes, ex-
tensively discussed in [11] (sections 3,4), [22] and the con-
cept of grouping, introduced in [4] (section 4) are known.

For example, let us consider an n-dimensional rectan-
gular Tile Space JS , whose bounds are defined as follows:
0 ≤ jS

i < uS
i , i = 1, . . . , n and uS

1 ≥ uS
i , i = 2, . . . , n. It

is grouped according to the matrix

HG =




1 1 . . . 1
0 1

m2
. . . 0

...
...

. . .
...

0 0 . . . 1
mn




Thus, a tile jS belongs to group jG =

(
n∑

i=1

jS
i , � jS

2
m2

�, . . . , � jS
n

mn
�)T . Following the overlap-

ping execution scheme, if there are as many SMP nodes as
required, it will be executed in the SMP node (jG

2 , . . . , jG
n)

during the time step t =
n∑

i=1

jG
i =

n∑
i=1

jS
i +

n∑
i=2

� jS
i

mi
� (ac-

cording to the scheduling vector ΠG = (1, 1, . . . , 1)).
Thus, the makespan (number of time steps) of the algo-
rithm will be:

Punlimited−overlap =

n∑
i=1

uS
i +

n∑
i=2

�uS
i

mi
� − 2n + 2. (1)

Similarly, if we follow the non-overlapping execution

scheme, then group jG = (
n∑

i=1

jS
i , � jS

2
m2

�, . . . , � jS
n

mn
�)T will

be executed during the time step t = jG
1 =

n∑
i=1

jS
i (accord-

ing to the scheduling vector ΠG = (1, 0, . . . , 0)). Thus, the

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

makespan of the algorithm will be:

Punlimited−non−overlap =

n∑
i=1

uS
i − n + 1 (2)

In the sequel, we shall present some scheduling strate-
gies of a Tile Space onto a fixed number of SMPs. All the
formulas concerning the allocation of tiles or groups to SMP
nodes and the time step of their execution can be applied to
any convex space, as defined in §2. However, when calculat-
ing the makespan of an algorithm, we shall consider a rect-
angular Tile Space, such as the one aimed by formulas (1)
and (2). We consider this simplification is necessary for ex-
pressing our ideas without too much complicating our math-
ematical formulas. In addition, this simplification does not
constrain any of the advantages or disadvantages of the pro-
posed methods, apart from those concerning load balanc-
ing, which can be more thoroughly investigated in our fu-
ture work.

3. Scheduling onto a fixed number of SMPs

3.1. Cyclic assignment to SMPs

In [6, 7] the optimality of the cyclic assignment of 2-
dimensional tiles onto a fixed number of processors was
theoretically proven. However, the calculations in [6, 7]
did not take into account the communication overhead in-
volved. Generalizing this approach for n-dimensional tiles
and for clusters of SMP nodes, we consider that the avail-
able SMP nodes form a virtual (n − 1)-dimensional mesh
of p2 × . . . × pn = p SMP nodes. We cyclically as-
sign the groups to the SMP nodes. That is, we assign
group jG to the SMP node (jG

2 %p2, . . . , j
G
n %pn), as in-

dicated in Fig. 1. Therefore, each SMP node will execute

� � uS
2

m2
�

p2
	 × . . . × � � uS

n
mn

�
pn

	 = �uG
2

p2
	 × . . . × �uG

n

pn
	 rows of

groups (where uG
i = � uS

i

mi
	, i = 2, . . . , n).

If the rows of groups assigned to an SMP node, are ex-
ecuted in lexicographic order, the row (x, jG

2 , . . . , jG
n)

will be executed in the SMP node (jG
2 %p2, . . . , j

G
n %pn)

after
n∑

i=2

[
� jG

i

pi
�

n∏
k=i+1

�uG
k

pk
	
]

rows, imposing a latency of

uS
1

n∑
i=2

[
� jG

i

pi
�

n∏
k=i+1

�uG
k

pk
	
]

time steps. In addition, as de-

duced from Fig. 1, the location of a group, relatively to the
corresponding chunk origin, is (jG

1
′
, jG

2 %p2, . . . , j
G
n %pn),

where jG
1

′ = jS
1 +

n∑
i=2

jS
i %mipi.

Therefore, if the underlying architecture allows for con-
current execution of computations and communication, fol-
lowing the overlapping execution scheme, group jG will be

time scheduling

on 2 SMP nodes

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j
1

S

j
2

S

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

chunk origins
j
1

S

j
2

S

Figure 1. Cyclic assignment to SMPs

computed during the time step t(jG) = jG
1

′ +
n∑

i=2

jG
i %pi +

uS
1

n∑
i=2

[
� jG

i

pi
�

n∏
k=i+1

�uG
k

pk
	
]

. Thus, the makespan of the algo-

rithm will be Pcyclic−overlap = max t(jG) − min t(jG) +
1 ⇒

Pcyclic−overlap =
n∑

i=2

[
(uS

i − 1)%mipi + (�uS
i

mi
� − 1)%pi

]
+ uS

1

n∏
i=2

� uS
i

mipi
�. (3)

The first term of the right-hand part in formula (3) repre-
sents the time required for filling the pipeline, while the sec-
ond term corresponds to the time each processor is busy ex-
ecuting calculations.

If we should do with a conventional communica-
tion architecture as node interconnect (i.e. without NIC
support for relieving the CPU from the communica-
tion burden), following the non-overlapping execu-
tion scheme, group jG will be computed during the

time step t(jG) = jG
1

′ + uS
1

n∑
i=2

[
� jG

i

pi
�

n∏
k=i+1

�uG
k

pk
	
]

.

Thus, the makespan of the algorithm will be
Pcyclic−non−overlap = max t(jG) − min t(jG) + 1 ⇒

Pcyclic−non−overlap =
n∑

i=2

[
(uS

i − 1)%mipi

]
+ uS

1

n∏
i=2

� uS
i

mipi
	 (4)

3.2. Mirror assignment to SMPs

Let us consider another schedule, if we assign the tiles to
SMP nodes as indicated in Fig. 2. That is, we assign group

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j1
S

j2
S

t

P

scheduling on a fixed number of processors
following the mirror mapping scheme

t

P

scheduling on an unlimited number of
processors

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

idle time steps for some of the processors

Figure 2. Mirror assignment to SMPs

jG to the SMP node

(jG
2 %p2 if even(jG

2 /p2)
(p2 − 1) − jG

2 %p2 if odd(jG
2 /p2)

, . . . ,

jG
n %pn if even(jG

n /pn)
(pn − 1) − jG

n %pn if odd(jG
n /pn)).

This schedule has the advantage that there is no need for
data transfer along the boundaries of chunks of tiles, thus
less time is wasted for communication.

Then, like the cyclic assignment schedule, if the chunks
of groups are executed in lexicographic order, the chunk
containing row (x, jG

2 , . . . , jG
n) will be executed af-

ter
n∑

i=2

[
� jG

i

pi
�

n∏
k=i+1

�uG
k

pk
	
]

chunks. The latency imposed

by each of the previous chunks, when combining the mir-
ror assignment schedule with the overlapping execution
scheme, is greater than the respective one when apply-
ing the cyclic assignment schedule. It, thus, equals to

uS
1 +

n∑
i=2

[(mi + 1)pi] − 2n + 2, as the computation of

a whole chunk should be finished before the computa-
tion of the next chunk starts. In addition, as deduced from
Fig. 2, the position of a group, relatively to the correspond-
ing chunk origin, is (jG

1
′
, jG

2 %p2, . . . , j
G
n %pn), where

jG
1

′ = jS
1 +

n∑
i=2

jS
i %mipi. Therefore, group jG will be

computed during the time step t(jG) = jG
1

′ +
n∑

i=2

jG
i %pi +[

uS
1 +

n∑
i=2

[(mi + 1)pi] − 2n + 2
]

n∑
i=2

[
� jG

i

pi
�

n∏
k=i+1

�uG
k

pk
	
]

.

Thus, the makespan of the algorithm will be

Pmirror−overlap = max t(jG) − min t(jG) + 1 ⇒

Pmirror−overlap =

=
n∑

i=2

[
(uS

i − 1)%mipi + (�uS
i

mi
� − 1)%pi

]
−

−
n∑

i=2

[(mi + 1)pi] + 2n − 2+

+

[
uS

1 +
n∑

i=2

[(mi + 1)pi] − 2n + 2

]
n∏

i=2

� uS
i

mipi
�

(5)

If there is no shortage of processors (uS
i ≤ mipi,

∀i = 2, . . . , n), the proposed schedules are equiva-
lent. Otherwise, it can be easily deduced from (3),(5)
that Pcyclic−overlap < Pmirror−overlap. Their differ-
ence is due to the fact that, following the mirror assignment
schedule, every time the computation of a chunk fin-
ishes and the computation of the next one starts, there are
some idle time steps for some of the processors, as indi-
cated in Fig. 2. The cyclic schedule is thus preferable to the
mirror one.

Similarly, following the non-overlapping execu-
tion scheme, group jG will be computed during

the time step t(jG) = jG
1

′ + (uS
1 +

n∑
i=2

mipi −

n + 1)
n∑

i=2

[
� jG

i

pi
�

n∏
k=i+1

�uG
k

pk
	
]

. Thus, the makespan

of the algorithm will be Pmirror−non−overlap =
max t(jG) − min t(jG) + 1 ⇒

Pmirror−non−overlap =

=
n∑

i=2

[
(uS

i − 1)%mipi

]
−

n∑
i=2

mipi + n − 1+

+

[
uS

1 +
n∑

i=2

mipi − n + 1

]
n∏

i=2

� uS
i

mipi
�

(6)

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

It can be deduced from (4),(6) that Pcyclic−non−overlap ≤
Pmirror−non−overlap. (They are equivalent only in case
there is no lack of processors.) However, since the commu-
nication overhead is not hidden under the computation time,
this schedule may sometimes result in a shorter total execu-
tion time, due to better exploitation of the available band-
width. In particular, if there are only two SMP nodes along
a dimension, no SMP node should both send and receive
data along that dimension. Thus, the communication over-
head will be halved.

3.3. Cluster assignment to SMPs

time scheduling

on 2 SMP nodes

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j
1

S

j
2

S

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

j
1

S

j
2

S

"GROUPS" "TILES"

Figure 3. Cluster assignment to SMPs

Alternatively, following the approach of [18], general-
izing it for n-dimensional spaces and taking into account
that there is no need for communication among proces-
sors of the same SMP node, we may assign neighboring
rows of tiles to the same CPU, as indicated in Fig. 3. In
order to achieve this schedule, we cluster together neigh-
boring tiles (jS

1 , jS
2 , . . . , jS

n), mapping them to a super-

tile or “TILE” labeled as (jS
1 , � jS

2
� u2

m2p2
��, . . . , �

jS
n

� un
mnpn

��).
Thus, the corresponding “GROUP” will be jG = (j1 +
n∑

i=2

� jS
i

� uS
i

mipi
�
�, � jS

2

m2�
uS
2

m2p2
�
�, . . . , � jS

n

mn� uS
n

mnpn
�
�) and, follow-

ing the overlapping execution scheme, it will be executed

during the time “STEP” t(jS) = j1 +
n∑

i=2

� jS
i

� uS
i

mipi
�
� +

n∑
i=2

� jS
i

mi�
uS

i
mipi

�
�. As a “TILE” consists of

n∏
i=2

� uS
i

mipi
	 tiles, a

“STEP” will be equivalent to
n∏

i=2

� uS
i

mipi
	 time steps (exclud-

ing the DMA initialization and synchronization time). Thus,
the makespan of the algorithm will be Pcluster−overlap =
n∏

i=2

� uS
i

mipi
	(max t(jS) − min t(jS) + 1) ⇒

Pcluster−overlap =
n∏

i=2

� uS
i

mipi
�(uS

1 − 2n + 2+

+
n∑

i=2

� uS
i

�
uS

i
mipi

�
� +

n∑
i=2

� uS
i

mi�
uS

i
mipi

�
�)

(7)

It can be proven that it always holds Pcyclic−overlap ≤
Pcluster−overlap. The proof of this formula is omitted due
to lack of space. Thus, this schedule results to a worse num-
ber of execution steps than the previous one. Their differ-
ence is due to the fact that, in this schedule, the filling of the
pipeline is slower. However, the previous mathematical for-
mula has not taken into consideration the time required for
the initialization of messages and for synchronization. Since
the cluster assignment schedule requires less messages to be
sent and less synchronization, in some cases it may be prac-
tically proven more efficient.

Similarly, following the non-overlapping execution
scheme, tile (jS

1 , jS
2 , . . . , jS

n), corresponding to “GROUP”

jG = (j1 +
n∑

i=2

� jS
i

� uS
i

mipi
�
�, � jS

2

m2�
uS
2

m2p2
�
�, . . . , � jS

n

mn� uS
n

mnpn
�
�)

is executed during the time “STEP” t(jS) =

j1 +
n∑

i=2

� jS
i

� uS
i

mipi
�
�. A computation “subSTEP” is equiv-

alent to
n∏

i=2

� uS
i

mipi
	 computation substeps, but a commu-

nication “subSTEP” is equivalent to less than
n∏

i=2

� uS
i

mipi
	

communication substeps. In particular, if the commu-
nication load is equal along all communication dimen-
sions (as resulted by the method proposed in [24]),
the amount of data to be transferred, as indicated in

Fig. 4, is
n∏

i=2

� uS
i

mipi
	

n∑
i=2

1

(n−1)� uS
i

mipi
�

≤
n∏

i=2

� uS
i

mipi
	

times the communication load of a tile. Thus, the
makespan of the algorithm will be Pcluster−non−overlap =

C
(
max t(jS) − min t(jS) + 1

)
(where 1 ≤ C ≤

n∏
i=2

� uS
i

mipi
�)

⇒
Pcluster−non−overlap =

= C

(
uS

1 − n + 1 +
n∑

i=2

� uS
i

� ui
mipi

� �
)

(8)

In conclusion, comparing to the cyclic assignment sched-
ule, this method has the drawback of slower pipeline fill-
ing. However, it results to less communication overhead,
which significantly reduces the total execution time, espe-
cially when the non-overlapping execution scheme is ap-
plied.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

clustering

Figure 4. Clustering communication

3.4. Retiling

time scheduling

on 2 SMP nodes

SMP0

SMP1

SMP2

SMP3

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

CPU0

CPU1

j
1

S

j
2

S

SMP0

SMP1

CPU0

CPU1

CPU0

CPU1

j
1

S

j
2

S

Figure 5. Retiling

A more efficient schedule can be obtained, if we adapt
the size of tiles to the available number of SMPs (Fig. 5).
That is, we retile the initial Iteration Space, so as to get

uS
i
′ = mipi, (i = 2, . . . , n) and uS

1
′ = uS

1

n∏
i=2

uS
i

mipi
.

Then, the size of a “new” tile will be equal to the size
of an “old” tile and, consequently, a “new” computation
step will be equivalent to an “old” computation step. Fol-
lowing the overlapping execution scheme, the makespan
of the algorithm, according to the formula (1), will be

Pretile−overlap =
n∑

i=1

uS
i
′ +

n∑
i=2

�uS
i

′

mi
	 − 2n + 2 ⇒

Pretile−overlap =

=
n∑

i=2

[(mi + 1) pi] − 2n + 2 + uS
1

n∏
i=2

uS
i

mipi
.

(9)

In case uS
i %mipi = 0 (i = 2, . . . , n), it holds

that Pretile−overlap = Pcyclic−overlap. Otherwise,
Pretile−overlap < Pcyclic−overlap. Their difference is due
to the fact that the cyclic schedule does not assign ex-
actly the same number of tiles to each processor, resulting
to a load imbalance.

Using the non-overlapping execution scheme, the
makespan of the algorithm, according to the formula (2),

will be Pretile−non−overlap =
n∑

i=1

uS
i
′ − n + 1 ⇒

Pretile−non−overlap =

=
n∑

i=2

mipi − n + 1 + uS
1

n∏
i=2

uS
i

mipi
.

(10)

From (4),(10), we can deduce that Pretile−non−overlap ≤
Pcyclic−non−overlap. In addition, a “new” computation sub-
step is equivalent to an “old” computation substep, but a
“new” communication substep is equivalent to less than an
“old” communication substep. In particular, as in the clus-
ter assignment schedule, if the communication load is equal
along all communication dimensions, the amount of data to

be transferred is
n∑

i=2

1

(n−1)
uS

i
mipi

≤ 1 times the communica-

tion load of an “old” tile.
In conclusion, in every case this schedule is preferable to

previously proposed ones, assuming that there are no factors
constraining the tile shape, such as false sharing, or cache
locality [16, 17, 23]. It can fully exploit the computational
power of all the SMP nodes and it achieves a perfect load
balance, without imposing any additional complexity to the
initial schedule. But if, apart from parallel scheduling, there
are other factors constraining the tile size and shape, this
schedule will be proven to be inefficient, since it totally re-
organizes the execution order of iterations.

4. Experimental Results

4.1. Experimental platform

In order to evaluate the proposed methods, we use a
Linux SMP cluster with 2 identical nodes. Each node has
1GB of RAM and 2 Pentium III @ 1266 MHz CPUs. The
cluster nodes communicate through a Myrinet high perfor-
mance interconnect, using the GM low level message pass-
ing system.

In order to utilize the available processors in each SMP
node as efficiently as possible, our implementation uses one
multi-threaded process per SMP, with the number of threads
equal to the number of CPUs. Multithreading support is
based on the LinuxThreads library. Threads executing on
the same SMP communicate using shared memory, elimi-
nating the need for message passing. For the data exchange
between processes executing on different SMPs, Myricom’s

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

GM version 1.6.3 is used [19]. GM is a low-level message
passing library for Myrinet. It comprises a library used by
userspace programs, an OS driver (in our case, a Linux ker-
nel module) and a Myrinet Control Program (MCP), which
is executed on the LANai, the embedded RISC micropro-
cessor on the Myrinet NIC. The GM driver is used during
the execution of a userspace process to open and close ports
and to allocate and free memory suitable for DMA trans-
fers. A port is a communication endpoint, used as the in-
terface between a userspace process and the NIC. Having
opened a port, a process can communicate directly with the
NIC, without the need for system calls, bypassing the oper-
ating system. Thus, all data exchange is performed directly
to and from userspace buffers.

To provide flow control between the host and the NIC,
sending and receiving messages is regulated by tokens. Ini-
tially, a process possesses a finite number of send and re-
ceive tokens. To be able to receive a message, the process
must provide GM with a buffer in DMAable memory, re-
linquishing a receive token. When a message is received,
the DMA engine on the Myrinet NIC places it directly into
the userspace buffer. The process polls for new messages
and retrieves the receive token when a message arrives. The
same applies to sending messages: The process relinquishes
a send token by requesting the transmission of a message
from a userspace buffer, then retrieves it when the send op-
eration completes and an appropriate send completion call-
back function is executed by GM. As the data exchange be-
tween the host memory and the NIC is undertaken by the
DMA engine on the NIC, without involving the CPU, over-
lapping of communication with computation is possible.

4.2. Experimental Data

We performed several series of experiments in order to
evaluate and compare the practical speedups obtained us-
ing each one of the four alternative schedules, combined
with both the alternative execution schemes. Our test appli-
cation code was the following:

for (i=1; i<=X; i++)
for(j=1; j<=Y; j++)
for(k=1; k<=Z; k++)
A[i][j][k]=func(A[i-1][j][k],

A[i][j-1][k],A[i][j][k-1]);

where A is an array of X × Y × Z floats and X, Y << Z.
Without lack of generality, we consider, as a tile, a rectan-
gle with ij, ik and jk sides. The dimension k is the largest
one, so all tiles along the k-axis are mapped onto the same
processor, as proposed in [2, 11]. Each tile has i, j dimen-
sions equal to x and k dimension equal to z. Thus, there are
X
x tiles along dimensions i, X

x tiles along dimensions j and

Non Overlapping Execution Scheme
Pre-computation Part of Communication in a tile:

gm provide receive buffer()
do

poll the GM event queue
process the event

until data received
Post-computation Part of Communication in a tile:

gm send with callback()
do

poll the GM event queue
process the event

until data sent
Barrier for Threads in SMP

Overlapping Execution Scheme
Pre-computation Part of Communication in a tile:

If on first tile
Execute a non-overlapping receive

gm provide receive buffer() for tile (t1 + 1, t2, t3)
gm send with callback() for tile (t1 − 1, t2, t3)

Post-computation Part of Communication in a tile:
do

poll the GM event queue
process the event

until send & receive completed
Barrier for Threads in SMP
If on last tile

Execute a non-overlapping send

Table 1. Execution Schemes Implementation

Z
z tiles along dimension k.

After implementing all four schedules in combination
with both execution schemes, as described by the pseudo-
code of Table 1, we measured the performance of all sched-
ules and compared it with their theoretically expected per-
formance. For various tile sizes, we have conducted a series
of experiments for each schedule+execution scheme com-
bination, varying the iteration space size. In Fig. 6 we have
plotted our experimental results along with the respective
theoretical curves. In fact, we have experimented with many
more configurations and tile sizes, but, since the graphical
results were similar, we chose to show a representative set
of measurements. As a measure of performance, we have
used the ratio of the speedup obtained to the best possible
speedup. That is, we have depicted the ratio of the speedup
obtained to the number of processors used. Thus, the closer
a plot is to 1, the more efficient a schedule is. As can be
seen in Fig. 6, the practical completion times of our exper-
iments differ to our theoretical predictions by at most 3%.
For the overlapping communication schedules, this can be
attributed to both the DMA engine on the Myrinet NIC and
the CPU trying to access data in memory simultaneously.

One can easily deduce that in almost all cases, the retil-
ing schedule achieves the best performance, both theoret-
ically and experimentally. This result was expected, since
the retiling schedule absolutely adjusts tiles to the existing
configuration of a cluster. However, in our experiments we
have eliminated the effect of cache miss penalties by using

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 500 1000 1500 2000 2500 3000 3500

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
retile - non-overlapping (theoretical)

cluster - non-overlapping
cluster - non-overlapping (theoretical)

mirror - non-overlapping
mirror - non-overlapping (theoretical)

cyclic - non-overlapping
cyclic - non-overlapping (theoretical)

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 1.2

 500 1000 1500 2000 2500 3000 3500

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
retile - overlapping (theoretical)

cluster - overlapping
cluster - overlapping (theoretical)

mirror - overlapping
mirror - overlapping (theoretical)

cyclic - overlapping
cyclic - overlapping (theoretical)

Figure 6. Experimental Data: Tile Size 128 ×
32 × 32

small iteration space widths. If our iteration space dimen-
sions which are not assigned to the same processor were too
long, the retiling schedule could have destroyed the data lo-
cality achieved by optimally selected small tiles.

Note also that the cluster assignment schedule using tile
size x is equivalent to the retiling schedule using tile size
4x. This was expected, considering that by construction the
iterations executed and the data sent in these two cases are
the same. What differs is the execution order of iterations
but here we have eliminated the cache misses overhead, in
order to test our schedules’ optimality and not data locality.

When following the non-overlapping execution scheme,
the difference among the performance of the four sched-
ules is mainly due to the volume of the data to be trans-
ferred. As depicted in Fig. 7, the mirror assignment sched-
ule involves double the communication of retiling and clus-
ter assignment schedule, while the cyclic assignment sched-
ule involves 6 times the same communication volume.

When following the overlapping execution scheme,
since the communication volume is hidden under com-
putation, their difference is due to the time steps that

SMP node0

SMP node1

Retiling or
Cluster assignment scheme

SMP node0

SMP node1

Mirror assignment scheme

SMP node0

SMP node1

Cyclic assignment scheme

Figure 7. Communication among SMPs

each SMP has to stall waiting for the required data to ar-
rive. The number of these time steps are equal regarding
the retiling and the cyclic assignment schedules. How-
ever, using the cluster or the mirror assignment schedule,
the idle time steps, as depicted in Figs 1, 2 are dou-
ble.

In addition, note that all schedules achieve better perfor-
mance for long Iteration Spaces. This is due to the fact that
when the mapping dimension of the Iteration Space is com-
paratively short, the time required for the last processor to
start computing after the first data have arrived, is not mi-
nor in comparison to the total execution time.

4.3. Simulation Data

The previous experimental data have been obtained on a
cluster of 2 SMP nodes with 2 CPUs each. Note in Fig. 7
that in the retiling and the cluster assignment schedule there
is no SMP node that should both send and receive data.
Thus, we expect that the relative performance of the four
schedules would change when scaling up our underlying ar-
chitecture. In order to evaluate the merits of the proposed
schedules, using bigger clusters than the one we had avail-
able, we performed a number of simulations, whose results
are depicted in Figs 8-9. The performance of all four sched-
ules has been simulated assuming that the initialization of
DMA and synchronization overhead is negligible, as de-
duced from microbenchmarking in our platform. Similar to
Fig. 6, the values plotted in Figs 8-9 express, for each pro-
posed schedule, the speedup obtained, divided by the num-
ber of CPUs used: Speedup

Number of Processors Used .
It can be easily seen that when we are not interested

in possible cache miss penalties imposed by reorganizing
the Tile Space, the retiling schedule is again the most effi-
cient one, due to the fact that it can fully exploit the com-

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
cluster - non-overlapping
mirror - non-overlapping
cyclic - non-overlapping

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
cluster - overlapping
mirror - overlapping
cyclic - overlapping

Figure 8. Simulation Data: Tile Space . . .×16×
16 on a grid of 4×4 nodes with 2×2 CPUs each

putational power of all the SMP nodes and by definition it
achieves a perfect load balance.

As far as the cluster assignment schedule is concerned,
for small Tile Spaces, it is inefficient due to its slow pipeline
filling. However, when the mapping dimension of the Tile
Space is long enough, this schedule achieves high speedups,
due to the fact that it minimizes the volume of data to be
transferred. In fact, as explained in §4.2, the plot represent-
ing the cluster assignment schedule will fall onto the plot
representing the retiling schedule if we shift it parallely to
the x-axis (see Fig. 8). The cluster assignment schedule is
less efficient than the retiling schedule, only in case uS

i is
not a multiple of mipi (see Fig. 9), due to load imbalance.

We also deduce that the cyclic assignment schedule is
equivalent to the retiling schedule, when the number of tiles
along each dimension i is a multiple of mipi and the over-
lapping execution scheme is used. Otherwise, if uS

i is not a
multiple of mipi, their difference is due to the fact that the
cyclic schedule does not achieve a perfect load balance. Us-
ing the non-overlapping execution scheme, the difference is
due to the fact that, as analyzed in Fig. 4 and §3.4, the cyclic

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Non Overlapping Execution Scheme

retile - non-overlapping
cluster - non-overlapping
mirror - non-overlapping
cyclic - non-overlapping

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 22000

S
pe

ed
up

 /

pr
oc

es
so

rs

Height of Iteration Space

Overlapping Execution Scheme

retile - overlapping
cluster - overlapping
mirror - overlapping
cyclic - overlapping

Figure 9. Simulation Data: Tile Space . . .×22×
22 on a grid of 4×4 nodes with 2×2 CPUs each

schedule results to more communication load, which is not
hidden under the computation load. In addition, it can be
more efficient than the cluster assignment schedule, only in
case we use the overlapping communication scheme. This
is due to the fact that in this case the extra communication
overhead of the cyclic schedule is hidden under the compu-
tation load.

5. Conclusions

In this paper, we presented and experimentally com-
pared four different methods for scheduling Tiled Iteration
Spaces onto a cluster with a fixed number of SMPs. We
concluded that the most efficient schedule is in most cases
obtained when we adapt the size and shape of tiles to the
size of the underlying architecture (retiling schedule). How-
ever, in case it is not possible, or it is not desired, since
tiles are already optimally selected considering data locality
[16, 17, 23], we propose either a cyclic assignment sched-
ule, or clustering together neighboring tiles and handling
them as a super-tile. The cyclic approach is preferable when

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

the communication and computation substeps can be over-
lapped. In the opposite case, we propose the cluster assign-
ment schedule, which considerably reduces the volume of
data to be transferred.

Acknowlegement

Maria Athanasaki is partially supported by a research
student scholarship, awarded by the A.S. Onassis public
benefit foundation.

References

[1] C. Ancourt and F. Irigoin. Scanning Polyhedra with DO
Loops. In Proceedings of the Third ACM SIGPLAN Sym-
posium on Principles & Practice of Parallel Programming
(PPoPP), pages 39–50, Williamsburg, VA, Apr 1991.

[2] T. Andronikos, N. Koziris, G. Papakonstantinou, and
P. Tsanakas. Optimal Scheduling for UET/UET-UCT Gener-
alized N-Dimensional Grid Task Graphs. Journal of Parallel
and Distributed Computing, 57(2):140–165, May 1999.

[3] T. Andronikos, N. Koziris, G. Papakonstantinou, and
P. Tsanakas. Optimal Scheduling for UET-UCT Grids Into
Fixed Number of Processors. In Proceedings of 8th Eu-
romicro Workshop on Parallel and Distributed Processing
(PDP2000), IEEE Press, pages 237–243, Rhodes, Greece,
Jan 2000.

[4] M. Athanasaki, A. Sotiropoulos, G. Tsoukalas, and
N. Koziris. Pipelined Scheduling of Tiled Nested Loops onto
Clusters of SMPs using Memory Mapped Network Inter-
faces. In Proceedings of the 2002 ACM/IEEE conference on
Supercomputing (SC2002), Baltimore, Maryland, Nov 2002.
IEEE Computer Society Press.

[5] M. Blumrich. Network Interface for Protected, User-Level
Communication. PhD thesis, Princeton University, Apr
1996.

[6] P. Boulet, J. Dongarra, Y. Robert, and F. Vivien. Tiling for
Heterogeneous Computing Platforms. Technical Report UT-
CS-97-373, University of Tennessee, Knoxville, 1997.

[7] P. Y. Calland, J. Dongarra, and Y. Robert. Tiling with Lim-
ited Resources. In L. Thiele, J. Fortes, K. Vissers, V. Taylor,
T. Noll, and J. Teich, editors, Application Specific Systems,
Architectures, and Processors, ASAP’97, IEEE Computer
Society Press, pages 229–238, Jul 1997. Extended version
available on the web at http://www.ens-lyon.fr/∼yrobert.

[8] F. O. Carroll, H. Tezuka, A. Hori, and Y. Ishikawa. The De-
sign and Implementation of Zero Copy MPI Using Commod-
ity Hardware with a High Performance Network. In Pro-
ceedings of the International Conference on Supercomput-
ing, pages 243–249, Melbourne, Australia, 1998.

[9] F. Desprez, J. Dongarra, and Y. Robert. Determining the Idle
Time of a Tiling: New Results. Journal of Information Sci-
ence and Engineering, 14:167–190, Mar 1997.

[10] G. Goumas, M. Athanasaki, and N. Koziris. An Efficient
Code Generation Technique for Tiled Iteration Spaces. IEEE
Trans. on Parallel and Distributed Systems, 14(10):1021–
1034, Oct 2003.

[11] G. Goumas, A. Sotiropoulos, and N. Koziris. Mini-
mizing Completion Time for Loop Tiling with Computa-
tion and Communication Overlapping. In Proceedings of
IEEE Int’l Parallel and Distributed Processing Symposium
(IPDPS’01), San Francisco, Apr 2001.

[12] E. Hodzic and W. Shang. On Supernode Transformation with
Minimized Total Running Time. IEEE Trans. on Parallel
and Distributed Systems, 9(5):417–428, May 1998.

[13] E. Hodzic and W. Shang. On Time Optimal Supernode
Shape. IEEE Trans. on Parallel and Distributed Systems,
13(12):1220–1233, Dec 2002.

[14] K. Hogstedt, L. Carter, and J. Ferrante. Determining the Idle
Time of a Tiling. In Principles of Programming Languages
(POPL), pages 319–323, Jan 1997.

[15] F. Irigoin and R. Triolet. Supernode Partitioning. In Proceed-
ings of the 15th Ann. ACM SIGACT-SIGPLAN Symp. Princi-
ples of Programming Languages, pages 319–329, San Diego,
California, Jan 1988.

[16] M. Kandemir, J. Ramanujam, and A. Choudary. Improving
Cache Locality by a Combination of Loop and Data Trans-
formations. IEEE Trans. on Parallel and Distributed Sys-
tems, 48(2):159–167, Feb 1999.

[17] M. Lam, E. Rothberg, and M. Wolf. The Cache Performance
and Optimizations of Blocked algorithms. In Second Inter-
national Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS), pages
63–74, Santa Clara, California, Apr 1991.

[18] N. Manjikian and T. S. Abdelrahman. Exploiting Wave-
front Parallelism on Large-Scale Shared-Memory Multipro-
cessors. IEEE Trans. on Parallel and Distributed Systems,
12(3):259–271, Mar 2001.

[19] Myricom. GM: A Message-Passing System for Myrinet Net-
works, 2002. http://www.myri.com/scs/GM/doc/html.

[20] D. Patterson and J.Hennessy. Computer Organization &
Design. The Hardware/Software Interface, pages 364–367.
Morgan Kaufmann Publishers, San Francisco, CA, 1994.

[21] J. Ramanujam and P. Sadayappan. Tiling Multidimensional
Iteration Spaces for Multicomputers. Journal of Parallel and
Distributed Computing, 16:108–120, 1992.

[22] A. Sotiropoulos, G. Tsoukalas, and N. Koziris. Enhanc-
ing the Performance of Tiled Loop Execution onto Clusters
using Memory Mapped Network Interfaces and Pipelined
Schedules. In Proceedings of the 2002 Workshop on Com-
munication Architecture for Clusters (CAC’02), Int’l Paral-
lel and Distributed Processing Symposium (IPDPS’02), Fort
Lauderdale, Florida, Apr 2002.

[23] M. Wolf and M. Lam. A Data Locality Optimizing Algo-
rithm. In ACM SIGPLAN’91 Conference on Programming
Language Design and Implementation (PLDI), Toronto, On-
tario, Jun 1991.

[24] J. Xue. Communication-Minimal Tiling of Uniform Depen-
dence Loops. Journal of Parallel and Distributed Comput-
ing, 42(1):42–59, 1997.

Proceedings of the 12th Euromicro Conference on Parallel, Distributed and Network-Based Processing (EUROMICRO-PDP’04)

1066-6192/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

