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Abstract

Tiling or supernode transformation is extensively discussed
as a loop transformation to efficiently execute nested loops
onto distributed memory machines. In addition, a lot
of work has been done concerning the selection of a
communication-minimal and a scheduling-optimal tiling
transformation. However, no complete approach has been
presented in terms of implementation for non-rectangularly
tiled iteration spaces. Code generation in this case can be
extremely complex, while parallelization issues such as data
distribution and communication are far from being straight-
forward. In this paper, we propose a complete method to
efficiently generate data parallel code for arbitrarily tiled
iteration spaces. We assign chains of neighboring tiles to
the same processor. Experimental results show that non-
rectangular tiling allows better scheduling schemes, thus
achieving less overall execution time.

Keywords: Loop tiling, supernodes, non-unimodular trans-
formations, data parallel, code generation.

1 Introduction

Tiling or supernode transformation is a well known loop
transformation used to enforce coarse grain parallelism in
distributed memory machines. Tiling groups neighboring
iterations to form a unique computational unit which is un-
interruptedly executed. Communication occurs in larger
messages before and after the computation of a tile, reduc-
ing both the number of total messages and the amount of
data exchanged. A lot of work has been done concerning
the selection of a communication-minimal tiling. Ramanu-
jam and Sadayappan in [9] first accented the use of non-
rectangular tiles in order to minimize inter-processor com-
munication. Boulet et al. in [3] used a per tile communi-
cation function that has to be minimized by linear program-
ming approaches. Based on this function, Xue in [11] pre-
sented a complete method to determine the tiling transfor-

mationH that imposes minimum communication. On the
other hand, different tile shapes can also lead to different
scheduling schemes for an algorithm. Hodzic and Shang in
[7] presented a method to determine the tile shape that leads
to minimum overall execution time. Most significantly,
communication-minimal and time-optimal tile shapes are
both derived from the tiling cone of the algorithm and thus
can be simultaneously achieved. Specifically, in [7] it is
shown that, for a given tile size, a time-optimal tile shape
can be determined by properly scalingn vectors from the
surface of the algorithm’s tiling cone.

Despite all this extensive research on tiling iteration
spaces for minimum communication and optimal overall
execution time, no complete approach has been presented
addressing implementation issues such as transformed loop
bounds calculation, iteration distribution, data distribution
and message passing code generation for arbitrarily tiled
loop nests. In other words, there are no actual experimental
results to verify the above theory. In this paper we present
a complete approach to generate data-parallel code for arbi-
trarily tiled iteration spaces to be executed onto distributed
memory machines. We continue previous work concerning
the efficient generation of sequential tiled code [5], based on
the transformation of a non-rectangular tile to a rectangu-
lar one. We take advantage of the regularity of transformed
rectangular tiles in order to effectively distribute data among
processors and generate the communication primitives. In
this way, the parallelization process of the sequential tiled
code is greatly simplified. Our experimental results con-
firm that the selection of a non-rectangular tiling transfor-
mation can lead to a much more efficient scheduling of tiles
to processors. The rest of the paper is organized as follows:
Section 2 presents some preliminary concepts, along with
some notation and intuition from the techniques presented
in [5]. Section 3 addresses all parallelization problems such
as computation distribution, data distribution and automatic
message passing code generation. Section 4 presents our
experimental results while Section 5 summarizes our results
and proposes future work.



2 Preliminary Concepts

2.1 Program Model-Notation

In this paper we consider algorithms with perfectly
nested FOR-loops with uniform and constant dependencies
(as in [3]). That is, our algorithms are of the form:

FORj1 = l1 TO u1 DO

FORj2 = l2 TO u2 DO

...

FORjn = ln TOun DOA[fw(j)℄ := F (A[fw(j � d1)℄; : : : ; A[fw(j � dq)℄);
ENDFOR

...

ENDFOR

ENDFOR

We are dealing with general parameterized convex
spaces, with the only assumption that the iteration space is
defined as the bisection of a finite number of semi-spaces of
the n-dimensional spaceZn (as in [1]). Finally, we assume
that there are no anti or output dependencies.

Throughout this paper the following notation is used:Z
is the set of integers,n is the number of nested FOR-loops
of the algorithm andq is the number of dependence vectors.
We denote a vector asa or~a according to the context. Thek-th element of the vector is denotedak. The dependence
matrix of an algorithm is the set of all dependence vectors:D = fd1; d2; : : : ; dqg. Jn � Zn is the set of indexes, or the
Iteration Space of an algorithm:J n = fj(j1; :::; jn)jji 2Z ^ li � ji � ui; 1 � i � ng. Each point in thisn-
dimensional integer space is a distinct instance of the loop
body. The Data Space, denotedDS, is defined as:DS =ffw(j)jj 2 Jng, wherefw is the write array reference.

2.2 Tiling Transformation

In a tiling transformation, the index spaceJ n is par-
titioned into identicaln-dimensional parallelepiped areas
(tiles or supernodes) formed byn independent families of
parallel hyperplanes. Tiling transformation is defined by
then-dimensional square matrixH . Each row vector ofH
is perpendicular to one family of hyperplanes forming the
tiles. Dually, it can be defined byn linearly independent
vectors, which are the sides of the tiles. MatrixP con-
tains the side-vectors of a tile as column vectors. It holdsP = H�1. Given a tiling transformationH and an iteration
spaceJn, we define the following spaces:

1. The Tile Iteration SpaceTIS(H) = fj 2 ZnjbHj =0g, which contains all points that belong to the tile
starting at the axes origins.

2. The Tile SpaceJS(Jn; H) = fjSjjS = bHj; j 2Jng, which contains the images of all pointsj 2 J n
according to the tiling transformation.

3. The Tile Dependence MatrixDS = fdS jdS = bH(j+d); d 2 D; j 2 TISg, which contains the dependen-
cies between tiles.

2.3 Sequential Tiled Code

In [5] we have presented a complete method to efficiently
generate sequential tiled code, that is, code that reorders the
initial execution of the algorithm according to a tiling trans-
formationH . The tiled iteration space is now traversed by
a 2n dimensional loop, where then outermost loops enu-
merate the tiles and then innermost ones sweep the points
within tiles. We presented an efficient method to calculate
the lower and upper bounds for then outermost loops, that
is lSk anduSk for the loop control variablejSk . In order to cal-
culate the corresponding bounds for then innermost loops,
we transformed the original non-rectangular tile to a rect-
angular one, using a non-unimodular transformationH 0 di-
rectly derived fromH . Specifically, it holdsH 0 = V H ,
whereV is an� n diagonal matrix such thatvkkhk 2 Zn,
andhk is thek-th row ofH . The inverse of matrixH 0 is de-
notedP 0. We shall continue using this transformation in the
parallelization process presented in this paper and thus we
need to introduce some basic concepts and notations found
in greater detail in [5].
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Figure 1. Traverse the TIS with a non-
unimodular transformation

Figure 1 shows the transformation of theTIS into a rect-
angular space called the Transformed Tile Iteration SpaceTTIS using matricesH 0 andP 0. If jS 2 JS and j 0 2TTIS, the correspondingj 2 J n is calculated from the ex-
pressionj = PjS + P 0j0. Code generation for the loop
that will traverse theTTIS is straightforward, since the
lower and upper bounds of control variablej 0k (l0k andu0k
respectively) can be easily determined as follows:l 0k = 0
andu0k = vkk � 1 (for boundary tiles these bounds can be



corrected using inequalities describing the original iteration
space). Note, that each loop control variable may have a
non-unitary stride and a non-zero incremental offset. We
shall denote the incremental stride of control variablej 0k ask. In addition, control variablej 0k may havek � 1 incre-
mental offsets, one for the increment of each of thek � 1
outermost control variables, denotedakl (l = 1 : : : k�1). In
[5] it is proven that strides and initial offsets in our case can
be directly obtained from the Hermite Normal Form (HNF)
of matrixH 0, denotedfH 0. Specifically, it holds:k = eh0kk
andakl = eh0kl (Fig. 2).
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Figure 2. Steps and incremental offsets inTTIS derived from matrix fH 0
3 Data Parallel Code Generation

The parallelization of the sequential tiled code involves
issues such as computation distribution, data distribution
and communication between processors. Tang and Xue in
[10] addressed the same issues for rectangularly tiled iter-
ation spaces. We shall generate efficient data parallel code
for non-rectangular tiles without imposing any further com-
plexity. The underlying architecture is considered a (n�1)-
dimensional processor mesh. Thus, each processor is iden-
tified by a (n � 1)-dimensional vector denoted~pid. The
memory is physically distributed among processors. Pro-
cessors perform computations on local data and communi-
cate with each other with messages in order to exchange
data that reside to remote memories. In other words, we
consider a message-passing environment over a NUMA ar-
chitecture. Note, however, that the (n� 1)-dimensional un-
derlying architecture is not a physical restriction, but a con-
vention for processor naming. The general intuition in our
approach is that since the iteration space is transformed byH andH 0 into a space of rectangular tiles, each processor
can work on its local share of ”rectangular” tiles and per-
form operations on rectangular data spaces according to a
proper memory allocation scheme. After all computations
in a processor have been completed, locally computed data
can be written back to the appropriate locations of the global
data space. In this way, each processor essentially works on

iteration and data spaces that are both rectangular, and prop-
erly translates from its local data space to the global one.

3.1 Computation and Data Distribution

Computation distribution determines which computa-
tions of the sequential tiled code will be assigned to which
processor. Then innermost loops of the sequential tiled
code that access the internal points of a tile will not be par-
allelized, and thus parallelization involves the distribution
of tiles to processors. Hodzic and Shang in [6] mapped
all tiles along a specific dimension to the same processor
and used hyperplane� = [1; : : : ; 1℄ as time schedule vec-
tor. In addition to this, previous work [2] in the field of
UET-UCT task graphs has shown that if we map all tiles
along the dimension with the maximum length (i.e. maxi-
mum number of tiles) to the same processor, then the over-
all scheduling is optimal, as long as the computation to
communication ratio is one. We follow this approach in
order to map tiles to processors, trying to adjust tile size
properly. Let us denote them-th dimension as the one
with the maximum total length. According to this, all tiles
indexed byjS(jS1 ; : : : ; jSm; : : : ; jSn ), wherejSi = onst,i = 1; : : : ;m � 1;m + 1; : : : ; n andlSm � jSm � uSm are
executed by the same processor. Then � 1 coordinates of
a tile (excludingjSm) identify the processor that a tile is go-
ing to be mapped to (~pid). All tiles alongjSm (denoted also
astS) are sequentially executed by the same processor, one
after the other, in an order specified by a linear time sched-
ule. This means that, after the selection of indexj Sm with
the maximum trip count, we reorder all indexes so thatj Sm
becomes the innermost one. This corresponds to loop index
interchange or permutation. Since all dependence vectorsdS 2 DS are considered lexicographically positive, the in-
terchanging or reordering of indexes is valid (see also [8]).

In a NUMA architecture, the data space of the original
algorithm is distributed to the local memories of the var-
ious nodes forming the global data space. Data distribu-
tion decisions affect the communication volume, since data
that reside in one node may be needed for the computa-
tion in another. In our approach, we follow the”computer-
owns” rule, which dictates that a processor owns the data
it writes, and communication occurs when one processor
needs to read data computed by another. Consequently, the
original location of an array element is where it is com-
puted. Substantially, the memory space allocated by a pro-
cessor represents the space where computed data are to be
stored. This means that each processor iterates over a num-
ber of transformed rectangular tiles (TTISs), and locally
stores its computed data to a rectangular data space. At
the end of all its computations, the processor places its
locally computed data to the appropriate positions of the
global Data Space (DS). The data space computed by a
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Figure 3. Local Data Space LDS and Trans-
formed Tile Iteration Space TTIS

tile could be an exact image of theTTIS, but in that case
the holes of theTTIS would correspond to unused extra
space. In addition to the space storing the computed data,
each processor needs to allocate extra space for communi-
cation, that is memory space to store the data it receives
from its neighbors. This means that we need to condense
the actual points of theTTIS and provide further space for
received data. Since, after all transformations, we finally
work with rectangular sets, this Local Data Space denotedLDS allocated by a processor can be formally defined as
follows: LDS = fj 00 2 Znj0 � j00k < offk + vkk=k; k =1; : : : ; n; k 6= m ^ 0 � j00m < offm + jtjvmm=mg, wherejtj denotes the number of tiles assigned to the particular pro-
cessor. As shown in Figure 3,LDS consists of the mem-
ory space required for storing computed data (black dots)
and for unpacking received data (grey dots) of a tile, multi-
plied by the number of tiles assigned to the processor. White
squares depict unused data. The offsetoffk which expands
the space to store received data, is derived from the com-
munication criteria of the algorithm as shown in the next
subsection.

Recall that each processor iterates over theTTIS for as
many times as the number of tiles assigned to the proces-
sor. If t is the current tile andj 0 2 TTIS the current in-
stance of the innern-dimensional loop, functionmap(j 0; t)
determines the memory location inLDS where the com-
putation for this iteration is to be stored (Figure 3). Appar-
ently,map�1(j00) is its inverse. Functionlo(j) in Table 1
usesmap(j0; t) in order to locate the processor~pid and the
memory locationj 00 2 LDS, where the computed data of
iteration pointj 2 Jn is to be stored. Inversely, Table 2
shows the series of steps required to locate the correspond-
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Figure 4. Relations between DS, Jn and LDS
ing j 2 Jn for a pointj 00 2 LDS of processor~pid. Thus,lo�1() is called by processors at the end of their compu-
tations, in order to transit from theirLDSs to the original
iteration spaceJn. In the sequel, the corresponding point in
the Data SpaceDS is found viafw (Figure 4).

Table 1. Using function lo() to locate j 2 Jn,
in the LDS of a processorj00 = map(j0; t)j00k = j0k=k + offk; k 6= mj00m = (tvmm + j0m)=m + offmj00; ~pid = lo(j)jS = bHjj0 = H 0(j � PjS)j00 = map(j0; jSm � lSm)~pid = (jS1 ; : : : ; jSm�1; jSm+1; : : : ; jSn )

3.2 Communication

Using the iteration and data distribution schemes de-
scribed before, data that reside in the local memory mod-
ule of one processor may be needed by another due to al-
gorithmic dependencies. In this case, processors need to
communicate via message passing. The two fundamental
issues that need to be addressed regarding communication
are the specification of the processors each processor needs
to communicate with, and the determination of the data that
need to be transferred in each message.

As far as the communication data is concerned, we fo-
cus on the communication points, e.g. the iterations that
compute data read by another processor. We further ex-
ploit the regularity of theTTIS to deduce simple crite-
ria for the communication points at compile time. More



Table 2. Using function lo�1() to locate j 00 2LDS of processor ~pid in Jnj0 = map�1(j00)t = (j00m � offm)m=vmmj0k = k(j00k � offk) + (k�1Pl=1 eh0klj0l)%k; k 6= mj0m = m(j00m � offm)� tvmm + (m�1Pl=1 eh0mlj0l)%mj = lo�1(j00; ~pid)j0 = map�1(j00)jS = (pid1; : : : ; pidm�1; t+ lSm; pidm+1; : : : ; pidn)j = PjS + P 0j0
specifically, a pointj 0 2 TTIS corresponds to a commu-
nication point according to thek-th dimension if thek-th
coordinate ofj 0 + d0l is greater than the respectiveTTIS-
bound at thek-th dimension for some transformed depen-
dence vectord0l 2 D0 (D0 = H 0D). In other words,j 0
is a communication point respective to thek-th dimension
when it holdsj 0k + max(d0kl) > vkk � 1 or equivalentlyj0k � vkk �max(d0kl). We define the communication vec-
tor ~CC = (1; : : : ; n) wherek = vkk � max(d0kl).
It is obvious that ~CC can easily be determined at compile
time. Note that the offsets inLDS referenced inx3.1 can
easily arise as follows:offk = dmax(d0kl)=ke; k 6= m
andoffm = vmm=m.

Communication takes place before and after the execu-
tion of a tile. Before the execution of a tile, a processor
must receive all the essential non-local data computed
elsewhere, and unpack this data to the appropriate loca-
tions in itsLDS. Dually, after the completion of a tile,
the processor must send part of the computed data to
the neighboring processors for later use. We adopt the
communication scheme presented by Tang and Xue in
[10], which suggests a simple implementation for packing
and sending the data, and a more complicated one for
the receiving and unpacking procedure. The asymmetry
between the two phases (send-receive) arises from the fact
that a tile may need to receive data from more than one
tiles of the same predecessor processor, but it will send its
data only once to each successor processor, satisfying all
the tile dependencies that lead to different tiles assigned to
the same successor in a single message. In other words, a
tile will receive from tiles, while it will send to processors.
Let Dm be the projection ofDS in then � 1 dimensions,
when the mapping dimensionm is collapsed. Dm ex-
presses processor dependencies, meaning that, in general,
processor ~pid needs to receive from processors~pid � dm
and send to processors~pid + dm for all dm 2 Dm. The

following schemes for receive-unpack and pack-send have
been adopted according to the MPI platform.dm(dS)
denotes the processor dependencedm that corresponds
to a tile dependencedS , while dS(dm) denotes all tile
dependenciesdS that generate processor dependencedm.
Functionminsucc(~s; dm) denotes the lexicographically
minimum successor tile of tile~s in processor directiondm, while function valid(~s) returns true if tile~s is
enumerated. The two functions are described in detail
in [10]. LA denotes an array in local memory which
implements theLDS. In theRECEIVE routine, we denote
asl0i, u0i the bounds of the tile(( ~pid; tS)� dS), from which
the current tile( ~pid; tS) is dependent.

RECEIVE( ~pid; tS ;DS; ~CC)
FOR dS 2 DS DO /*For all tile dependencies...*/

/*...if predecessor tile valid and current tile
lexicographically minimum successor...*/
IF(valid(( ~pid; tS)� dS) ^( ~pid; tS)=minsucc(( ~pid; tS)� dS,dm(dS)))

/*...receive data from predecessor processor...*/
MPI Recv(buffer,Rank( ~pid� dm(dS)),...);
/*...and unpack it toLDS of current processor.*/
count:=0;
FOR j01 = max(l01; dS1 1) TO u01 STEP=1 DO
...
FOR j0m = l0m TO u0m STEP=m DO
...
FOR j0n = max(l0n; dSnn) TO u0n STEP=n DO

LA[map(j0,tS � lSn)-( dS1 v111 ; : : : ; dSnvnnn )]:=
buffer[count++];

ENDFOR
...

ENDFOR
...

ENDFOR
ENDIF

SEND( ~pid; tS ;Dm; ~CC)
FOR dm 2 Dm DO /*For all processor dependencies...*/

/*...if a valid successor tile exists...*/
IF(9dS(dm) 2 DS:valid(( ~pid; tS) + dS(dm)))

/*...pack communication data to buffer...*/
count:=0;
FOR j01 = max(l01; dm1 1) TO u01 STEP=1 DO
...
FOR j0m = l0m TO u0m STEP=m DO
...
FOR j0n = max(l0n; dmn�1n) TO u0n STEP=n DO
buffer[count++]:=LA[map(j 0,tS � lSn)];

ENDFOR
...

ENDFOR
...

ENDFOR
/*...and send to successor processor.*/
MPI Send(buffer,Rank( ~pid+ dm),...);

ENDIF

Summarizing, the generated data parallel code for
the loop of Section 2 would have a form similar to the
following:



FORACROSS pid1 = lS1 TO uS1 DO

...

FORACROSS pidn�1 = lSn�1 TO uSn�1 DO

/*Sequential execution of tiles*/
FOR tS = lSn TO uSn DO

/*Receive data from neighboring tiles*/
RECEIVE( ~pid; tS ; DS ; ~CC);
/*Traverse the internal of the tile*/
FOR j01 = l01 TO u01 STEP=1 DO

...

FOR j0n = l0n TO u0n STEP=n DO

/*Perform computations on Local Data SpaceLDS*/t := tS � lSn ;LA[map(j0; t)℄ := F (LA[map(j0 � d01; t)℄; : : : ;LA[map(j0 � d0q ; t)℄);
ENDFOR

...

ENDFOR

/*Send data to neighboring processors*/
SEND( ~pid; tS ;DS ; ~CC);

ENDFOR

ENDFORACROSS

...

ENDFORACROSS

4 Experimental Results

We have implemented our parallelizing techniques in a
tool that automatically generates data parallel code using
MPI and run our examples on a cluster with 16 identical
500MHz Pentium nodes with 128MB of RAM. The nodes
are interconnected with FastEthernet. The scope of our ex-
periments is to accentuate the selection of non-rectangular
tiling transformations. As candidate problems we used
SOR as presented in [11] and the Jacobi algorithm as pre-
sented in [7]. Both algorithms need to be skewed in or-
der to be rectangularly tiled. Thus, we applied rectangu-
lar tiling transformation to the skewed spaces, defined byHr = 24 1x 0 00 1y 00 0 1z 35, wherex; y; z 2 Z+. In addition, in

the SOR algorithm we applied non-rectangular transforma-

tion defined byHnr = 24 1x 0 00 1y 0� 1z 0 1z 35 and mapped tiles

along the third dimension to the same processor, while in
the Jacobi algorithm we applied non-rectangular tiling de-

fined byHnr = 24 1x � 12x 00 1y 00 0 1z 35 and mapped tiles along

the first dimension to the same processor. In both algo-
rithms, the communication volume, the number of required
processes and the tile size are the same for both rectangu-
lar and non-rectangular transformations. Figure 5 depicts
the maximum speedups in the SOR algorithm, obtained by
applying different tile sizes to four iteration spaces for rect-
angular and non-rectangular tiling (variables M, N represent
iteration space bounds), while Figure 6 shows the speedups
obtained when varying the tile size for a particular iteration
space. Figures 7 and 8 depict the respective speedups for
the Jacobi algorithm.
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Figure 5. SOR: maximum speedups for differ-
ent iteration spaces
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Figure 6. SOR: speedups for various tile sizes
(M=100, N=200)

In all cases non-rectangular tiling transformations lead
to greater speedups than rectangular ones. Specifically, in
SOR we have an average speedup improvement of 17.3%,
while in Jacobi an improvement of 9.1%. This confirms
the work presented in [7]. Note that all comparison factors
between rectangular and non-rectangular tiling are common
(tile size, communication volume and number of processors
required). Thus, we can safely assert that the reduction in
total execution times observed for non-rectangular tiles is
due to the more efficient scheduling schemes enabled in this
case.
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Figure 7. Jacobi: maximum speedups for dif-
ferent iteration spaces
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Figure 8. Jacobi: speedups for various tile
sizes (T=50, I=J=100)

5 Conclusions-Future Work

In this paper we presented a complete framework to gen-
erate data parallel code for arbitrarily tiled iteration spaces.
Our work is based on transforming the non-rectangular tile
into a rectangular one using a non-unimodular transforma-
tion. In this way, we were able to efficiently determine the
transformed loop bounds and strides and easily address par-
allelization issues such as data distribution and automatic
message-passing. Our experimental results show that fol-
lowing our approach to execute non-rectangular tiles in-
stead of rectangular ones, we can have a significant increase
in speedups, due to more efficient scheduling schemes. Fu-
ture work includes the combination of our method with ad-
vanced scheduling schemes presented in [4].
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