Delivering High Performance to Parallel Applications Using Advanced Scheduling
Nikolaos Drosinos #, Georgios Goumas #, Maria Athanasaki * and Nectarios Koziris #

& National Technical University of Athens

School of Electrical and Computer Engineering
Computing Systems Laboratory

Zografou Campus, Zografou 15773, Athens, Greece

e-mail: {ndros, goumas, maria, nkoziris }@cslab.ece.ntua.gr

This paper presents a complete framework for the parallelization of nested loops by applying tiling
transformation and automatically generating MPI code that allows for an advanced scheduling scheme.
In particular, under advanced scheduling scheme we consider two separate techniques: first, the ap-
plication of a suitable tiling transformation, and second the overlapping of computation and com-
munication when executing the parallel program. As far as the choice of a scheduling-efficient tiling
transformation is concerned, the data dependencies of the initial algorithm are taken into account
and an appropriate transformation matrix is automatically generated according to a well-established
theory. On the other hand, overlapping computation with communication partly hides the communi-
cation overhead and allows for a more efficient processor utilization. We address all issues concerning
automatic parallelization of the initial algorithm. More specifically, we have developed a tool that
automatically generates MPI code and supports arbitrary tiling transformations, as well as both com-
munication schemes, e.g. the conventional receive-compute-send scheme and the overlapping one. We
investigate the performance benefits in the total execution time of the parallel program attained by the
use of the advanced scheduling scheme, and experimentally verify with the help of application-kernel
benchmarks that the obtained speedup can be significantly improved when overlapping computation
with communication and at the same time applying an appropriate (generally non-rectangular) tiling
transformation, as opposed to the combination of the standard receive-compute-send scheme with the
usual rectangular tiling transformation.

1. Introduction-Background

Tiling or supernode transformation is one of the most common loop transformations discussed in
bibliography, proposed to enhance locality in uniprocessors and achieve coarse-grain parallelism in
multiprocessors. Tiling groups a number of iterations into a unit (tile), which is executed uninter-
ruptedly. Traditionally, only rectangular tiling has been used for generating SPMD parallel code for
distributed memory environments, like clusters. In [1], Tang and Xue provided a detailed method-
ology for generating efficient tiled code for perfectly nested loops, but only used rectangular tiles
due to the simplicity of the parallel code, since only division and modulo operations are required
in this case. However, recent scientific research has indicated that the performance of the parallel
tiled code can be greatly affected by the tile size ([2], [3], [4]), as well as by the tile shape ([5], [6],
[7]). The effect of the tile shape on the scheduling of the parallel program is depicted in Figure 1.
It is obvious that non-rectangular tiling is more beneficial in this particular case than rectangular
one, since it leads to fewer execution steps for the completion of the parallel algorithm. The main
problem with arbitrary tile shapes appears to be the complexity of the respective parallel code and
the performance overhead incurred by the enumeration of the internal points of a non-rectangular
tile. Therefore, an efficient implementation of an arbitrary tiling method and its incorporation in a
tool for automatic code generation would be desirable in order to achieve the optimal performance of
parallel applications.

Elaborating further more on scheduling, under conventional schemes, the required communication
between different processors occurs just before the initiation and after the completion of the com-

i Original Iteration Space W Rectangular Tiling X Non-rectangular Tiling
Pe 11 P 7
Py 10 Py 6
P, 9 P, 5
Py 8 P, 4
P, Td]s a3 7 P, & 3
P, 1‘ 12 3 | 4 5 6 P, |1/ 2 /d/f
i i Iy

Figure 1. Effect of tile shape on overall completion time

putations within a tile. That is, each processor first receives data, then computes all calculations
involved with the current tile, and finally sends data produced by the previous calculations. By pro-
viding support for an advanced scheduling scheme that uses non-blocking communication primitives,
and consequently allows the overlapping of useful computation with burdensome communication, it is
expected that the performance of the parallel application will be further improved. This hypothesis
is also established by recent scientific work ([8], [9]). More specifically, the blocking communication
primitives are substituted with non-blocking communication functions, which only initialize the com-
munication process, and can be tested for completion at a later part of the program. By doing so, after
initializing non-blocking communication the processor can go on with useful computation directly re-
lated to the user application. The communication completion can be tested as late as possible, when
it will most likely have completed, and thus the processor will not have to stall idle, prolonging the
total execution time of the application.

2. Algorithmic Model

Our model concerns n-dimensional perfectly nested loops with uniform data dependencies of the
following form:

FOR j1 = mini; TO maz; DO

FOR jn = min, TO0 max, DO
Computation(ji, ..., Jn);
ENDFOR

ENDFOR

The loop computation is a calculation generally involving an n-dimensional matrix A, which is
indexed by ji, ..., jn. We assume that the loop computation imposes lezicographically positive data
dependencies, so that the parallelization of the algorithm with the application of an appropriate tiling
transformation is always possible. Also, if the data dependencies are lexicographically positive, an
appropriate skewing transformation can eliminate all negative elements of the dependence matrix, so
that rectangular tiling can be applied, as well.

Furthermore, for the i-th loop bounds min;, maz; it holds that min; = f(j1,...,ji—1) and
maz; = ¢(j1,..-,7i—1). That is, our model also deals with non-rectangular iteration spaces, un-

der the assumption that they are defined as a finite number of semi-spaces of the n-dimensional space
VAL

3. Automatic Code Generation

The automatic parallelization process of the sequential program in schematically depicted in Fig-
ure 2. The procedure can be divided in three phases, namely the dependence analysis of the algorithm,
the application of an appropriate tiling transformation for the generation of intermediate sequential
tiled code, and finally the parallelization of the tiled code in terms of computation/data distribution,
as well as the implementation of communication primitives.

Initial Dependence Optimal Tiling Sequential Parallelization Parallel
Code Analysis Tiling Transformation Tiled Code Tiled Code

Figure 2. Automatic Parallelization of Sequential Code

The following Subsections elaborate on the automatic parallelization process, emphasizing on the
code generation issues.

3.1. Tiled Code Generation

The generation of the sequential tiled code from the initial algorithm mainly implies transforming
the n nested loops into 2n new ones, where the n outermost loops scan the tile space and the n
innermost ones traverse all iterations associated with a specific tile. This equivalent form of the
algorithm code is more convenient for the parallelization process, as the computation distribution can
be directly applied to the outermost n loops enumerating the tiles.

In case of rectangular tiling and rectangular iteration spaces, the respective sequential tiled code
is simple and straightforward, as it is implemented with the aid of integer division and modulo
operators ([7]). In the opposite case, if non-rectangular tiling is applied, or a non-rectangular iteration
space is considered, the transformation of the initial algorithm into sequential tiled code is a more
intricate task, that requires significant compiler work. In [10] we have proposed an efficient compiler
technique based on the Fourier-Motzkin elimination method for calculating the outer loops bounds.
The efficiency of the proposed methodology lies in that we managed to construct a compact system of
inequalities that allows the generation of tiled code, and thus compensates for the doubly exponential
complexity of the Fourier-Motzkin method. The simplified system of inequalities enumerates some
redundant tiles, as well, but the run-time overhead proves to be negligible in practice, since the
internal points of these tiles are never accessed.

As far as the traversing the internal of a tile is concerned, in [10] we further propose a method to
transform arbitrary shaped tiles into rectangular ones. By doing so, only rectangular tiles need to
be traversed and the expressions required in the n innermost loop bounds evaluation are significantly
reduced. Formally, the iteration space of a tile (Tile Iteration Space - T'IS) is transformed into a
new iteration space, the Transformed TIS (TT1S) by using a non-unimodular transformation. The
correspondence between the T1S and the TTIS is schematically depicted in Figure 3. It should be
intuitively obvious that the TTIS can be more easily traversed in comparison to the T'1S, although
special care needs to be taken so that only valid points (e.g. black dots in Figure 3) are accessed.

3.2. Parallelization

The sequential tiled code is parallelized according to the SPMD model in order to provide portable
MPI C++ code. The parallelization process addresses issues such as computation distribution, data
distribution and inter-process communication primitives. We will mainly focus on the communication
scheme, as the computation and data distribution are more extensively analyzed in [10].

Each MPI process assumes the execution of a sequence of tiles along the longest dimension of
the tile iteration space, as previous work in the field of UET-UCT graphs ([9]) suggests that this

Transformed Tile Iteration Space (TTIS) Tile Iteration Space (T1S)

P _

I2

20 560000800 00 ceeeiray
cooeoo0oo0e -
@e000O0O®@00O0 -8 e
Ppooeocoocoooeo -7 ’

]5@0000@0000 /,/’O o o /
0ce0000@00 P / J/
Ocoo0Oe@o0OO0O® ;@ 0 @ o e
becoooceocoo /\\ / /
pbooeooooeo ,‘ o o o o //

l10@oooo0oe@0000O J/ ,
O®e0000e@0O0 5 /o000 [RCEEEE
poocoocoeococoooe / /
oPeooooeooo0 _/ /l e o o .//
coeocoo0o0e®O / /

5@ 0000@0000 H’ //. o o o o
ceo0o00Oe@O0O0 /)
poooceoocooe //. e o o .{//
@e000O®@00O0 , -

000000 @O0 , ® .(,.,/
0000®0000 o -
0 5 10 i1 A < ",

Figure 3. Transformation of arbitrary shaped tile into rectangular

scheduling is optimal. The n outermost loops of the sequential tiled code are reordered, so that the one
corresponding to the maximum-length dimension becomes the innermost of the n. Each worker process
is identified by an n—1 dimensional pid vector directly derived from its MPI rank, so that it undertakes
the execution of all tiles whose n — 1 outermost coordinates match pid. Also, data distribution follows
the computer-owns rule, e.g. each worker process owns the data it computes. By adopting the above
computation and data distribution, the required SPMD model for the parallelization of the sequential
tiled code is relatively simple and efficient, as far as the overall performance is concerned.

Finally, in order for the worker processes to be able to exchange data, certain communication
primitives need to be supplied to the parallel code. We have implemented two communication patterns,
namely one based on blocking MPI primitives (MPI_Send, MPI_Recv), and an alternative one based
on non-blocking MPI primitives (MPI_Isend, MPI_Irecv). In the first case (blocking), each worker
process initially receives all non-local data required for the computation of a tile, then computes that
tile, and finally sends all computed data required by other processes (Table 1). Note that in this
case communication and computation phases are distinct and do not overlap. In the second case
(non-blocking), each worker process concurrently computes a tile, receives data required for the next
tile and sends data computed at the previous tile (Table 2). This communication scheme allows for
the overlapping of computation and communication phases.

for(tile t){ for(tile t){
MPI_Recv(t); MPI_Irecv(t+1);
Compute(t); MPI_Isend(t-1);
MPI_Send(t); Compute(t) ;
} MPI_Waitall;
}
Table 1 Table 2
Blocking communication scheme Non-blocking communication scheme

It is obvious that the non-blocking communication scheme allows for overlapping of computation
with communication only as long as both the MPI implementation and the underlying hardware in-
frastructure support it, as well. That is, the MPI implementation should make a distinction between
standard and non-blocking communication primitives, so as to exploit the benefits of the advanced
communication pattern. On the other hand, the underlying hardware/network infrastructure must
also support DMA-driven non-blocking communication. Unfortunately, this is not the case with
the used MPICH implementation for ch_p4 ADI-2 device, as indicated by the relative performance
of both schemes. In order to evaluate our proposed advanced scheduling scheme also in terms of

communication-computation overlapping, we thus resorted to synchronous MPI communication prim-
itives for the blocking scheme (e.g MPI_Ssend instead of MPI_Send). By doing so we were able to simu-
late the relative performance of both communication patterns, despite the implementation/hardware
restrictions.

4. Experimental Results

In order to evaluate the performance benefits obtained by the proposed advanced scheduling scheme,
we have conducted a series of experiments using micro-kernel benchmarks. More specifically, we
have automatically parallelized the Gauss Successive Over-relaxation (SOR - [11]) and the Texture
Smoothing Code (TSC - [12]) micro-kernel benchmarks, and we have experimentally verified the
overall execution time for different tiling transformations, blocking and non-blocking communication
schemes and various iteration spaces. Our platform is an 8-node dual-SMP cluster interconnected
with FastEthernet. Each node has 2 Pentium IIT CPUs at 800 MHz, 128 MB of RAM and 256 KB of
cache, and runs Linux with 2.4.20 kernel. We used g++ compiler version 2.95.4 with -O3 optimization
level. Finally, we used MPI implementation MPICH v. 1.2.5, configured with the following options:
--with-device=ch p4 —-with-comm=shared.

4.1. SOR
The SOR loop nest involves a computation of the form A[t,,j] = f(A[t,i —1,j], A[t, 4,5 — 1], At —
1,i+1,4], Alt—1,4,j+1], A[t—1,4, j]), while the iteration space is M x N x N. The dependence matrix
0 0 1 1 1
of the algorithm is D = | 1 0 —1 0 0 |. Because of the negative elements of D, skewing
01 0 -10
needs to be applied to the original algorithm for the rectangular tiling to be valid. An appropriate

1 0 0
skewing matrix is T = { 1 1 0 |, since TD > 0, that is the skewed algorithm contains only
2 01

non-negative dependencies. We will apply both rectangular and non-rectangular tiling to the skewed
iteration space, and evaluate both the blocking and the non-blocking communication scheme. More

z 0 0
specifically, the rectangular tile is provided by the matrix P, = | 0 y 0 |, while the proposed
0 0 =z

non-rectangular tiling transformation, as obtained from the algorithm’s tiling cone, is described by the

z 0 0 -|
matrix P,, = { 0 y O J . Note that in each case, the tile shape can be determined from the column

z 0 =z
vectors of the respective transformation matrix (P, or P,,.), while the tile size depends on the values
of the integers z, y and z. However, both tiles have equal sizes, since |P,.| = |P,,| = zyz, so that the

per-tile computation volume is equal in both cases. Moreover, since in both cases tiles will be mapped
to processors according to the third dimension, the per-tile communication volume and the number
of MPI processes required are the same, as process mapping and inter-process communication are
implicitly determined by the outermost two dimensions. Consequently, any differences in the overall
execution times should be attributed to the different scheduling that results from the two tiling
transformations, as well as to the communication pattern (blocking or non-blocking).

Experimental results for the SOR micro-kernel are depicted in Figure 4. In all cases, non-rectangular
tiling outperforms the rectangular tiling, while the non-blocking communication pattern is more effi-
cient than the blocking one, at least on a simulation level. In other words, the experimental results
comply to the theoretically anticipated performance.

4.2. TSC

TSC algorithm can be written as a triply nested loop with a computation of the form b[t,i,j] =
f(b[fﬂ -]-77 - 1]7b[f77 - 1,]]7b[f77 -]-77 + l]ab[fa7a7 - 1]7b[f - 17777 + 1]76[7‘ - 177 + 177 - l]ab[f -
1,i+1,7],b[t —1,i+ 1,5 + 1]) (iteration space T' x N x N). The dependence matrix of the algorithm

Overall Execution Time for SOR (256x128x128 Iteration Space) Overall Execution Time for SOR (128x256x256 Iteration Space)
<0 Re‘ctanqular‘ tiling ‘(blockinq‘) — 65 T ! ! T
R . Rectangular tilin blockin —
Rectangular tiling (non-blocking) -——--— Rectan ulag tilin (ngniblocking; N
Non-rectangular tiling (blocking) ----¥--- 9 g | 1ng T
35 Non-rectangular tiling (non-blocking) & 7 60 Nonfrectangulalirltlllng (block}nq) -
Non-rectangular tilin (non-blocking) =)
30 55 R
=X
$ 25 I] S S
N v 50 ~+— s e
5 N P——‘«/‘/'_"W %X -] K Rl
el e e T hal » U S NSt
o Y il > e KK K- a8 45 anen ** X
£ 20 X LK = a] F e -
. g S a8 = X
5 VR S e X & Eal - g B
R Rl -8 = - X =
st K ¥ . 40 rmm e s K .-
15 s g
a8 =]
a8)
o8 =2
B.g-oia-B8 P s
10 35 il o
5 30
5 10 15 20 25 30 35 40 20 40 60 80 100 120 140 160
Tile Size (in K) Tile Size (in K)

Figure 4. Experimental Results for SOR

[oo o0 o0 1 1 1 1]

is D = 11 1 0 0 -1 —1 —=1 1. Since D also contains negative elements, proper
10 -1 1 -1 1 0 -1

skewing needs to be applied for the rectangular tiling transformation to be valid. We consider the

1 00 z 0 0
skewing matrix 7= | 1 1 0 [. We will apply tiling transformation P,, = | —z y 0 | to
2 1 1 —-r -y =z

z 0 0 -|
the original iteration space, and rectangular tiling (P, = { 0 y O J) to the skewed iteration space.

0 0 =z
As in the SOR micro-kernel benchmark, in both cases (rectangular and non-rectangular tiling
transformation) we have an equal tile size (|P.| = |P,,| = zyz), that results to the same per-tile com-

putation volume. Furthermore, tiles are mapped to MPI processes according to the third dimension.

Experimental results are depicted in Figure 5. We observe that, as in SOR, the non-blocking
communication scheme with the application of non-rectangular tiling delivers the best overall per-
formance. In this case however, both tiling transformations deliver similar performance under the
blocking communication scheme, while non-rectangular tiling transformation is more beneficial in
case of the non-blocking communication scheme.

5. Conclusions

Summarizing, we have combined the notions of arbitrary tiling transformation and overlapping com-
munication and computation and incorporated these aspects into a complete framework to automati-
cally generate parallel MPI code. We have addressed all issues regarding parallelization, such as task
allocation, sweeping arbitrary shaped tiles and implementation of appropriate communication prim-
itives. We have experimentally evaluated our work, and supplied simulation results for application-
kernel benchmarks that verify the high performance gain obtained by the advanced scheduling scheme.

REFERENCES

[1] P. Tang, J. Xue, Generating Efficient Tiled Code for Distributed Memory Machines, Parallel
Computing 26 (11) (2000) 1369 1410.

[2] R. Andonov, P. Calland, S. Niar, S. Rajopadhye, N. Yanev, First Steps Towards Optimal Oblique
Tile Sizing, in: 8th International Workshop on Compilers for Parallel Computers, Aussois, 2000,
pp. 351-366.

(in sec)

Time

Overall Execution Time for TSC (128x128x128 Iteration Space) Overall Execution Time for TSC (128x256x256 Iteration Space)
20 T T T 60 T T T T T
Rectangular tiling (blocking) —— i Rectangular tiling (blocking) ——
Rectangular tiling (non-blocking) -—>—-— b Rectangular tiling (non-blocking) -—>—-—
Non-rectangular tiling (blocking) --—-%--- 58 1 Non-rectangular tiling (blocking) -—--%--
18 Non-rectangular tiling (non-blocking) &) %\ Non-rectangular tiling (non-blocking) iz}
56
5
54
16 S 0 3
M——*’ — “ Y\
BTG S e A 52 g o
\ M—/"’M"Jé/ x—/’x a - \ MM
o — 22 o o .
14 % e e g s0 e ﬂ;ﬁ/{*/*/
e K \ B - suttil X
| SN NN .
X~ \ VRO
e 48 mry U g ®
12 = b % = g8
e " \x\\\ X - N =)
e 46 o
° O, Bengeeio B
10 44
5 10 15 20 25 30 10 20 30 40 50 60 70 80
Tile Size (in K) Tile Size (in K)

Figure 5. Experimental Results for TSC

[3]

E. Hodzic, W. Shang, On Supernode Transformation with Minimized Total Running Time, IEEE
Trans. on Parallel and Distributed Systems 9 (5) (1998) 417 428.

J. Xue, W.Cai, Time-minimal Tiling when Rise is Larger than Zero, Parallel Computing 28 (6)
(2002) 915-9309.

E. Hodzic, W. Shang, On Time Optimal Supernode Shape, in: Proceedings of the International
Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA), Las
Vegas, CA, 1999.

K. Hogstedt, L. Carter, J. Ferrante, Selecting Tile Shape for Minimal Execution time, in: ACM
Symposium on Parallel Algorithms and Architectures, 1999, pp. 201-211.

J. Xue, Communication-Minimal Tiling of Uniform Dependence Loops, Journal of Parallel and
Distributed Computing 42 (1) (1997) 42-59.

G. Goumas, A. Sotiropoulos, N. Koziris, Minimizing Completion Time for Loop Tiling with
Computation and Communication Overlapping, in: Proceedings of IEEE International Parallel
and Distributed Processing Symposium (IPDPS’01), San Francisco, 2001.

T. Andronikos, N. Koziris, G. Papakonstantinou, P. Tsanakas, Optimal Scheduling for UET /UET-
UCT Generalized N-Dimensional Grid Task Graphs, Journal of Parallel and Distributed Com-
puting 57 (2) (1999) 140 165.

[10] G. Goumas, N. Drosinos, M. Athanasaki, N. Koziris, Compiling Tiled Iteration Spaces for Clusters,

in: Proceedings of the IEEE International Conference on Cluster Computing, Chicago, 2002.

[11]G. E. Karniadakis, R. M. Kirby, Parallel Scientific Computing in C++ and MPI : A Seamless

Approach to Parallel Algorithms and their Implementation, Cambridge University Press, 2002.

[12]S. Pande, T. Bali, A Computation + Communication Load Balanced Loop Partitioning Method

for Distributed Memory Systems, Journal of Parallel and Distributed Computing 58 (3) (1999)
515 545.

