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Delivering High Performan
e to Parallel Appli
ations Using Advan
ed S
hedulingNikolaos Drosinos a, Georgios Goumas a, Maria Athanasaki a and Ne
tarios Koziris aa National Te
hni
al University of AthensS
hool of Ele
tri
al and Computer EngineeringComputing Systems LaboratoryZografou Campus, Zografou 15773, Athens, Gree
ee-mail: fndros, goumas, maria, nkozirisg�
slab.e
e.ntua.grThis paper presents a 
omplete framework for the parallelization of nested loops by applying tilingtransformation and automati
ally generating MPI 
ode that allows for an advan
ed s
heduling s
heme.In parti
ular, under advan
ed s
heduling s
heme we 
onsider two separate te
hniques: �rst, the ap-pli
ation of a suitable tiling transformation, and se
ond the overlapping of 
omputation and 
om-muni
ation when exe
uting the parallel program. As far as the 
hoi
e of a s
heduling-eÆ
ient tilingtransformation is 
on
erned, the data dependen
ies of the initial algorithm are taken into a

ountand an appropriate transformation matrix is automati
ally generated a

ording to a well-establishedtheory. On the other hand, overlapping 
omputation with 
ommuni
ation partly hides the 
ommuni-
ation overhead and allows for a more eÆ
ient pro
essor utilization. We address all issues 
on
erningautomati
 parallelization of the initial algorithm. More spe
i�
ally, we have developed a tool thatautomati
ally generates MPI 
ode and supports arbitrary tiling transformations, as well as both 
om-muni
ation s
hemes, e.g. the 
onventional re
eive-
ompute-send s
heme and the overlapping one. Weinvestigate the performan
e bene�ts in the total exe
ution time of the parallel program attained by theuse of the advan
ed s
heduling s
heme, and experimentally verify with the help of appli
ation-kernelben
hmarks that the obtained speedup 
an be signi�
antly improved when overlapping 
omputationwith 
ommuni
ation and at the same time applying an appropriate (generally non-re
tangular) tilingtransformation, as opposed to the 
ombination of the standard re
eive-
ompute-send s
heme with theusual re
tangular tiling transformation.1. Introdu
tion-Ba
kgroundTiling or supernode transformation is one of the most 
ommon loop transformations dis
ussed inbibliography, proposed to enhan
e lo
ality in unipro
essors and a
hieve 
oarse-grain parallelism inmultipro
essors. Tiling groups a number of iterations into a unit (tile), whi
h is exe
uted uninter-ruptedly. Traditionally, only re
tangular tiling has been used for generating SPMD parallel 
ode fordistributed memory environments, like 
lusters. In [1℄, Tang and Xue provided a detailed method-ology for generating eÆ
ient tiled 
ode for perfe
tly nested loops, but only used re
tangular tilesdue to the simpli
ity of the parallel 
ode, sin
e only division and modulo operations are requiredin this 
ase. However, re
ent s
ienti�
 resear
h has indi
ated that the performan
e of the paralleltiled 
ode 
an be greatly a�e
ted by the tile size ([2℄, [3℄, [4℄), as well as by the tile shape ([5℄, [6℄,[7℄). The e�e
t of the tile shape on the s
heduling of the parallel program is depi
ted in Figure 1.It is obvious that non-re
tangular tiling is more bene�
ial in this parti
ular 
ase than re
tangularone, sin
e it leads to fewer exe
ution steps for the 
ompletion of the parallel algorithm. The mainproblem with arbitrary tile shapes appears to be the 
omplexity of the respe
tive parallel 
ode andthe performan
e overhead in
urred by the enumeration of the internal points of a non-re
tangulartile. Therefore, an eÆ
ient implementation of an arbitrary tiling method and its in
orporation in atool for automati
 
ode generation would be desirable in order to a
hieve the optimal performan
e ofparallel appli
ations.Elaborating further more on s
heduling, under 
onventional s
hemes, the required 
ommuni
ationbetween di�erent pro
essors o

urs just before the initiation and after the 
ompletion of the 
om-
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Figure 1. E�e
t of tile shape on overall 
ompletion time
putations within a tile. That is, ea
h pro
essor �rst re
eives data, then 
omputes all 
al
ulationsinvolved with the 
urrent tile, and �nally sends data produ
ed by the previous 
al
ulations. By pro-viding support for an advan
ed s
heduling s
heme that uses non-blo
king 
ommuni
ation primitives,and 
onsequently allows the overlapping of useful 
omputation with burdensome 
ommuni
ation, it isexpe
ted that the performan
e of the parallel appli
ation will be further improved. This hypothesisis also established by re
ent s
ienti�
 work ([8℄, [9℄). More spe
i�
ally, the blo
king 
ommuni
ationprimitives are substituted with non-blo
king 
ommuni
ation fun
tions, whi
h only initialize the 
om-muni
ation pro
ess, and 
an be tested for 
ompletion at a later part of the program. By doing so, afterinitializing non-blo
king 
ommuni
ation the pro
essor 
an go on with useful 
omputation dire
tly re-lated to the user appli
ation. The 
ommuni
ation 
ompletion 
an be tested as late as possible, whenit will most likely have 
ompleted, and thus the pro
essor will not have to stall idle, prolonging thetotal exe
ution time of the appli
ation.2. Algorithmi
 ModelOur model 
on
erns n-dimensional perfe
tly nested loops with uniform data dependen
ies of thefollowing form:FOR j1 = min1 TO max1 DO... FOR jn = minn TO maxn DOComputation(j1, ..., jn);ENDFOR...ENDFORThe loop 
omputation is a 
al
ulation generally involving an n-dimensional matrix A, whi
h isindexed by j1, . . . , jn. We assume that the loop 
omputation imposes lexi
ographi
ally positive datadependen
ies, so that the parallelization of the algorithm with the appli
ation of an appropriate tilingtransformation is always possible. Also, if the data dependen
ies are lexi
ographi
ally positive, anappropriate skewing transformation 
an eliminate all negative elements of the dependen
e matrix, sothat re
tangular tiling 
an be applied, as well.Furthermore, for the i-th loop bounds mini, maxi it holds that mini = f(j1; : : : ; ji�1) andmaxi = g(j1; : : : ; ji�1). That is, our model also deals with non-re
tangular iteration spa
es, un-der the assumption that they are de�ned as a �nite number of semi-spa
es of the n-dimensional spa
eZn.



33. Automati
 Code GenerationThe automati
 parallelization pro
ess of the sequential program in s
hemati
ally depi
ted in Fig-ure 2. The pro
edure 
an be divided in three phases, namely the dependen
e analysis of the algorithm,the appli
ation of an appropriate tiling transformation for the generation of intermediate sequentialtiled 
ode, and �nally the parallelization of the tiled 
ode in terms of 
omputation/data distribution,as well as the implementation of 
ommuni
ation primitives.
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Figure 2. Automati
 Parallelization of Sequential CodeThe following Subse
tions elaborate on the automati
 parallelization pro
ess, emphasizing on the
ode generation issues.3.1. Tiled Code GenerationThe generation of the sequential tiled 
ode from the initial algorithm mainly implies transformingthe n nested loops into 2n new ones, where the n outermost loops s
an the tile spa
e and the ninnermost ones traverse all iterations asso
iated with a spe
i�
 tile. This equivalent form of thealgorithm 
ode is more 
onvenient for the parallelization pro
ess, as the 
omputation distribution 
anbe dire
tly applied to the outermost n loops enumerating the tiles.In 
ase of re
tangular tiling and re
tangular iteration spa
es, the respe
tive sequential tiled 
odeis simple and straightforward, as it is implemented with the aid of integer division and modulooperators ([7℄). In the opposite 
ase, if non-re
tangular tiling is applied, or a non-re
tangular iterationspa
e is 
onsidered, the transformation of the initial algorithm into sequential tiled 
ode is a moreintri
ate task, that requires signi�
ant 
ompiler work. In [10℄ we have proposed an eÆ
ient 
ompilerte
hnique based on the Fourier-Motzkin elimination method for 
al
ulating the outer loops bounds.The eÆ
ien
y of the proposed methodology lies in that we managed to 
onstru
t a 
ompa
t system ofinequalities that allows the generation of tiled 
ode, and thus 
ompensates for the doubly exponential
omplexity of the Fourier-Motzkin method. The simpli�ed system of inequalities enumerates someredundant tiles, as well, but the run-time overhead proves to be negligible in pra
ti
e, sin
e theinternal points of these tiles are never a

essed.As far as the traversing the internal of a tile is 
on
erned, in [10℄ we further propose a method totransform arbitrary shaped tiles into re
tangular ones. By doing so, only re
tangular tiles need tobe traversed and the expressions required in the n innermost loop bounds evaluation are signi�
antlyredu
ed. Formally, the iteration spa
e of a tile (Tile Iteration Spa
e - TIS) is transformed into anew iteration spa
e, the Transformed TIS (TTIS) by using a non-unimodular transformation. The
orresponden
e between the TIS and the TTIS is s
hemati
ally depi
ted in Figure 3. It should beintuitively obvious that the TTIS 
an be more easily traversed in 
omparison to the TIS, althoughspe
ial 
are needs to be taken so that only valid points (e.g. bla
k dots in Figure 3) are a

essed.3.2. ParallelizationThe sequential tiled 
ode is parallelized a

ording to the SPMD model in order to provide portableMPI C++ 
ode. The parallelization pro
ess addresses issues su
h as 
omputation distribution, datadistribution and inter-pro
ess 
ommuni
ation primitives. We will mainly fo
us on the 
ommuni
ations
heme, as the 
omputation and data distribution are more extensively analyzed in [10℄.Ea
h MPI pro
ess assumes the exe
ution of a sequen
e of tiles along the longest dimension ofthe tile iteration spa
e, as previous work in the �eld of UET-UCT graphs ([9℄) suggests that this
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Figure 3. Transformation of arbitrary shaped tile into re
tangulars
heduling is optimal. The n outermost loops of the sequential tiled 
ode are reordered, so that the one
orresponding to the maximum-length dimension be
omes the innermost of the n. Ea
h worker pro
essis identi�ed by an n�1 dimensional pid ve
tor dire
tly derived from its MPI rank, so that it undertakesthe exe
ution of all tiles whose n�1 outermost 
oordinates mat
h pid. Also, data distribution followsthe 
omputer-owns rule, e.g. ea
h worker pro
ess owns the data it 
omputes. By adopting the above
omputation and data distribution, the required SPMD model for the parallelization of the sequentialtiled 
ode is relatively simple and eÆ
ient, as far as the overall performan
e is 
on
erned.Finally, in order for the worker pro
esses to be able to ex
hange data, 
ertain 
ommuni
ationprimitives need to be supplied to the parallel 
ode. We have implemented two 
ommuni
ation patterns,namely one based on blo
king MPI primitives (MPI Send, MPI Re
v), and an alternative one basedon non-blo
king MPI primitives (MPI Isend, MPI Ire
v). In the �rst 
ase (blo
king), ea
h workerpro
ess initially re
eives all non-lo
al data required for the 
omputation of a tile, then 
omputes thattile, and �nally sends all 
omputed data required by other pro
esses (Table 1). Note that in this
ase 
ommuni
ation and 
omputation phases are distin
t and do not overlap. In the se
ond 
ase(non-blo
king), ea
h worker pro
ess 
on
urrently 
omputes a tile, re
eives data required for the nexttile and sends data 
omputed at the previous tile (Table 2). This 
ommuni
ation s
heme allows forthe overlapping of 
omputation and 
ommuni
ation phases.for(tile t)fMPI Re
v(t);Compute(t);MPI Send(t);gTable 1Blo
king 
ommuni
ation s
heme
for(tile t)fMPI Ire
v(t+1);MPI Isend(t-1);Compute(t);MPI Waitall;gTable 2Non-blo
king 
ommuni
ation s
hemeIt is obvious that the non-blo
king 
ommuni
ation s
heme allows for overlapping of 
omputationwith 
ommuni
ation only as long as both the MPI implementation and the underlying hardware in-frastru
ture support it, as well. That is, the MPI implementation should make a distin
tion betweenstandard and non-blo
king 
ommuni
ation primitives, so as to exploit the bene�ts of the advan
ed
ommuni
ation pattern. On the other hand, the underlying hardware/network infrastru
ture mustalso support DMA-driven non-blo
king 
ommuni
ation. Unfortunately, this is not the 
ase withthe used MPICH implementation for 
h p4 ADI-2 devi
e, as indi
ated by the relative performan
eof both s
hemes. In order to evaluate our proposed advan
ed s
heduling s
heme also in terms of
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ommuni
ation-
omputation overlapping, we thus resorted to syn
hronous MPI 
ommuni
ation prim-itives for the blo
king s
heme (e.g MPI Ssend instead of MPI Send). By doing so we were able to simu-late the relative performan
e of both 
ommuni
ation patterns, despite the implementation/hardwarerestri
tions.4. Experimental ResultsIn order to evaluate the performan
e bene�ts obtained by the proposed advan
ed s
heduling s
heme,we have 
ondu
ted a series of experiments using mi
ro-kernel ben
hmarks. More spe
i�
ally, wehave automati
ally parallelized the Gauss Su

essive Over-relaxation (SOR - [11℄) and the TextureSmoothing Code (TSC - [12℄) mi
ro-kernel ben
hmarks, and we have experimentally veri�ed theoverall exe
ution time for di�erent tiling transformations, blo
king and non-blo
king 
ommuni
ations
hemes and various iteration spa
es. Our platform is an 8-node dual-SMP 
luster inter
onne
tedwith FastEthernet. Ea
h node has 2 Pentium III CPUs at 800 MHz, 128 MB of RAM and 256 KB of
a
he, and runs Linux with 2.4.20 kernel. We used g++ 
ompiler version 2.95.4 with -O3 optimizationlevel. Finally, we used MPI implementation MPICH v. 1.2.5, 
on�gured with the following options:--with-devi
e=
h p4 --with-
omm=shared.4.1. SORThe SOR loop nest involves a 
omputation of the form A[t; i; j℄ = f(A[t; i� 1; j℄; A[t; i; j� 1℄; A[t�1; i+1; j℄; A[t�1; i; j+1℄; A[t�1; i; j℄), while the iteration spa
e isM�N�N . The dependen
e matrixof the algorithm is D = 24 0 0 1 1 11 0 �1 0 00 1 0 �1 0 35. Be
ause of the negative elements of D, skewingneeds to be applied to the original algorithm for the re
tangular tiling to be valid. An appropriateskewing matrix is T = 24 1 0 01 1 02 0 1 35, sin
e TD � 0, that is the skewed algorithm 
ontains onlynon-negative dependen
ies. We will apply both re
tangular and non-re
tangular tiling to the skewediteration spa
e, and evaluate both the blo
king and the non-blo
king 
ommuni
ation s
heme. Morespe
i�
ally, the re
tangular tile is provided by the matrix Pr = 24 x 0 00 y 00 0 z 35, while the proposednon-re
tangular tiling transformation, as obtained from the algorithm's tiling 
one, is des
ribed by thematrix Pnr = 24 x 0 00 y 0x 0 z 35. Note that in ea
h 
ase, the tile shape 
an be determined from the 
olumnve
tors of the respe
tive transformation matrix (Pr or Pnr), while the tile size depends on the valuesof the integers x, y and z. However, both tiles have equal sizes, sin
e jPrj = jPnrj = xyz, so that theper-tile 
omputation volume is equal in both 
ases. Moreover, sin
e in both 
ases tiles will be mappedto pro
essors a

ording to the third dimension, the per-tile 
ommuni
ation volume and the numberof MPI pro
esses required are the same, as pro
ess mapping and inter-pro
ess 
ommuni
ation areimpli
itly determined by the outermost two dimensions. Consequently, any di�eren
es in the overallexe
ution times should be attributed to the di�erent s
heduling that results from the two tilingtransformations, as well as to the 
ommuni
ation pattern (blo
king or non-blo
king).Experimental results for the SOR mi
ro-kernel are depi
ted in Figure 4. In all 
ases, non-re
tangulartiling outperforms the re
tangular tiling, while the non-blo
king 
ommuni
ation pattern is more eÆ-
ient than the blo
king one, at least on a simulation level. In other words, the experimental results
omply to the theoreti
ally anti
ipated performan
e.4.2. TSCTSC algorithm 
an be written as a triply nested loop with a 
omputation of the form b[t; i; j℄ =f(b[t; i � 1; j � 1℄; b[t; i � 1; j℄; b[t; i � 1; j + 1℄; b[t; i; j � 1℄; b[t � 1; i; j + 1℄; b[t � 1; i + 1; j � 1℄; b[t �1; i+1; j℄; b[t� 1; i+1; j +1℄) (iteration spa
e T �N �N). The dependen
e matrix of the algorithm
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Figure 4. Experimental Results for SORis D = 24 0 0 0 0 1 1 1 11 1 1 0 0 �1 �1 �11 0 �1 1 �1 1 0 �1 35. Sin
e D also 
ontains negative elements, properskewing needs to be applied for the re
tangular tiling transformation to be valid. We 
onsider theskewing matrix T = 24 1 0 01 1 02 1 1 35. We will apply tiling transformation Pnr = 24 x 0 0�x y 0�x �y z 35 tothe original iteration spa
e, and re
tangular tiling ( Pr = 24 x 0 00 y 00 0 z 35) to the skewed iteration spa
e.As in the SOR mi
ro-kernel ben
hmark, in both 
ases (re
tangular and non-re
tangular tilingtransformation) we have an equal tile size (jPr j = jPnr j = xyz), that results to the same per-tile 
om-putation volume. Furthermore, tiles are mapped to MPI pro
esses a

ording to the third dimension.Experimental results are depi
ted in Figure 5. We observe that, as in SOR, the non-blo
king
ommuni
ation s
heme with the appli
ation of non-re
tangular tiling delivers the best overall per-forman
e. In this 
ase however, both tiling transformations deliver similar performan
e under theblo
king 
ommuni
ation s
heme, while non-re
tangular tiling transformation is more bene�
ial in
ase of the non-blo
king 
ommuni
ation s
heme.5. Con
lusionsSummarizing, we have 
ombined the notions of arbitrary tiling transformation and overlapping 
om-muni
ation and 
omputation and in
orporated these aspe
ts into a 
omplete framework to automati-
ally generate parallel MPI 
ode. We have addressed all issues regarding parallelization, su
h as taskallo
ation, sweeping arbitrary shaped tiles and implementation of appropriate 
ommuni
ation prim-itives. We have experimentally evaluated our work, and supplied simulation results for appli
ation-kernel ben
hmarks that verify the high performan
e gain obtained by the advan
ed s
heduling s
heme.REFERENCES[1℄ P. Tang, J. Xue, Generating EÆ
ient Tiled Code for Distributed Memory Ma
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