
1
Delivering High Performan
e to Parallel Appli
ations Using Advan
ed S
hedulingNikolaos Drosinos a, Georgios Goumas a, Maria Athanasaki a and Ne
tarios Koziris aa National Te
hni
al University of AthensS
hool of Ele
tri
al and Computer EngineeringComputing Systems LaboratoryZografou Campus, Zografou 15773, Athens, Gree
ee-mail: fndros, goumas, maria, nkozirisg�
slab.e
e.ntua.grThis paper presents a
omplete framework for the parallelization of nested loops by applying tilingtransformation and automati
ally generating MPI
ode that allows for an advan
ed s
heduling s
heme.In parti
ular, under advan
ed s
heduling s
heme we
onsider two separate te
hniques: �rst, the ap-pli
ation of a suitable tiling transformation, and se
ond the overlapping of
omputation and
om-muni
ation when exe
uting the parallel program. As far as the
hoi
e of a s
heduling-eÆ
ient tilingtransformation is
on
erned, the data dependen
ies of the initial algorithm are taken into a

ountand an appropriate transformation matrix is automati
ally generated a

ording to a well-establishedtheory. On the other hand, overlapping
omputation with
ommuni
ation partly hides the
ommuni-
ation overhead and allows for a more eÆ
ient pro
essor utilization. We address all issues
on
erningautomati
 parallelization of the initial algorithm. More spe
i�
ally, we have developed a tool thatautomati
ally generates MPI
ode and supports arbitrary tiling transformations, as well as both
om-muni
ation s
hemes, e.g. the
onventional re
eive-
ompute-send s
heme and the overlapping one. Weinvestigate the performan
e bene�ts in the total exe
ution time of the parallel program attained by theuse of the advan
ed s
heduling s
heme, and experimentally verify with the help of appli
ation-kernelben
hmarks that the obtained speedup
an be signi�
antly improved when overlapping
omputationwith
ommuni
ation and at the same time applying an appropriate (generally non-re
tangular) tilingtransformation, as opposed to the
ombination of the standard re
eive-
ompute-send s
heme with theusual re
tangular tiling transformation.1. Introdu
tion-Ba
kgroundTiling or supernode transformation is one of the most
ommon loop transformations dis
ussed inbibliography, proposed to enhan
e lo
ality in unipro
essors and a
hieve
oarse-grain parallelism inmultipro
essors. Tiling groups a number of iterations into a unit (tile), whi
h is exe
uted uninter-ruptedly. Traditionally, only re
tangular tiling has been used for generating SPMD parallel
ode fordistributed memory environments, like
lusters. In [1℄, Tang and Xue provided a detailed method-ology for generating eÆ
ient tiled
ode for perfe
tly nested loops, but only used re
tangular tilesdue to the simpli
ity of the parallel
ode, sin
e only division and modulo operations are requiredin this
ase. However, re
ent s
ienti�
 resear
h has indi
ated that the performan
e of the paralleltiled
ode
an be greatly a�e
ted by the tile size ([2℄, [3℄, [4℄), as well as by the tile shape ([5℄, [6℄,[7℄). The e�e
t of the tile shape on the s
heduling of the parallel program is depi
ted in Figure 1.It is obvious that non-re
tangular tiling is more bene�
ial in this parti
ular
ase than re
tangularone, sin
e it leads to fewer exe
ution steps for the
ompletion of the parallel algorithm. The mainproblem with arbitrary tile shapes appears to be the
omplexity of the respe
tive parallel
ode andthe performan
e overhead in
urred by the enumeration of the internal points of a non-re
tangulartile. Therefore, an eÆ
ient implementation of an arbitrary tiling method and its in
orporation in atool for automati

ode generation would be desirable in order to a
hieve the optimal performan
e ofparallel appli
ations.Elaborating further more on s
heduling, under
onventional s
hemes, the required
ommuni
ationbetween di�erent pro
essors o

urs just before the initiation and after the
ompletion of the
om-

2
1
 2
 3
 4
 5
 6

7

8

9

11

10

1
 2

3

4

5

6

7

j
1
j
1

j
2

P
1

P
2

P
3

P
4

P
5

P
6

P
1

P
2

P
3

P
4

P
5

P
6

j
2
j
2

j
1

Original Iteration Space
 Rectangular Tiling
 Non-rectangular Tiling

d
1

S

d
2

S
d
3

S

d
1

S

d
2

S

Figure 1. E�e
t of tile shape on overall
ompletion time
putations within a tile. That is, ea
h pro
essor �rst re
eives data, then
omputes all
al
ulationsinvolved with the
urrent tile, and �nally sends data produ
ed by the previous
al
ulations. By pro-viding support for an advan
ed s
heduling s
heme that uses non-blo
king
ommuni
ation primitives,and
onsequently allows the overlapping of useful
omputation with burdensome
ommuni
ation, it isexpe
ted that the performan
e of the parallel appli
ation will be further improved. This hypothesisis also established by re
ent s
ienti�
 work ([8℄, [9℄). More spe
i�
ally, the blo
king
ommuni
ationprimitives are substituted with non-blo
king
ommuni
ation fun
tions, whi
h only initialize the
om-muni
ation pro
ess, and
an be tested for
ompletion at a later part of the program. By doing so, afterinitializing non-blo
king
ommuni
ation the pro
essor
an go on with useful
omputation dire
tly re-lated to the user appli
ation. The
ommuni
ation
ompletion
an be tested as late as possible, whenit will most likely have
ompleted, and thus the pro
essor will not have to stall idle, prolonging thetotal exe
ution time of the appli
ation.2. Algorithmi
 ModelOur model
on
erns n-dimensional perfe
tly nested loops with uniform data dependen
ies of thefollowing form:FOR j1 = min1 TO max1 DO... FOR jn = minn TO maxn DOComputation(j1, ..., jn);ENDFOR...ENDFORThe loop
omputation is a
al
ulation generally involving an n-dimensional matrix A, whi
h isindexed by j1, . . . , jn. We assume that the loop
omputation imposes lexi
ographi
ally positive datadependen
ies, so that the parallelization of the algorithm with the appli
ation of an appropriate tilingtransformation is always possible. Also, if the data dependen
ies are lexi
ographi
ally positive, anappropriate skewing transformation
an eliminate all negative elements of the dependen
e matrix, sothat re
tangular tiling
an be applied, as well.Furthermore, for the i-th loop bounds mini, maxi it holds that mini = f(j1; : : : ; ji�1) andmaxi = g(j1; : : : ; ji�1). That is, our model also deals with non-re
tangular iteration spa
es, un-der the assumption that they are de�ned as a �nite number of semi-spa
es of the n-dimensional spa
eZn.

33. Automati
 Code GenerationThe automati
 parallelization pro
ess of the sequential program in s
hemati
ally depi
ted in Fig-ure 2. The pro
edure
an be divided in three phases, namely the dependen
e analysis of the algorithm,the appli
ation of an appropriate tiling transformation for the generation of intermediate sequentialtiled
ode, and �nally the parallelization of the tiled
ode in terms of
omputation/data distribution,as well as the implementation of
ommuni
ation primitives.
Initial

Code

Dependence

Analysis

Tiling

Transformation

Parallelization

Optimal

Tiling

Sequential

Tiled Code

Parallel

Tiled Code
Figure 2. Automati
 Parallelization of Sequential CodeThe following Subse
tions elaborate on the automati
 parallelization pro
ess, emphasizing on the
ode generation issues.3.1. Tiled Code GenerationThe generation of the sequential tiled
ode from the initial algorithm mainly implies transformingthe n nested loops into 2n new ones, where the n outermost loops s
an the tile spa
e and the ninnermost ones traverse all iterations asso
iated with a spe
i�
 tile. This equivalent form of thealgorithm
ode is more
onvenient for the parallelization pro
ess, as the
omputation distribution
anbe dire
tly applied to the outermost n loops enumerating the tiles.In
ase of re
tangular tiling and re
tangular iteration spa
es, the respe
tive sequential tiled
odeis simple and straightforward, as it is implemented with the aid of integer division and modulooperators ([7℄). In the opposite
ase, if non-re
tangular tiling is applied, or a non-re
tangular iterationspa
e is
onsidered, the transformation of the initial algorithm into sequential tiled
ode is a moreintri
ate task, that requires signi�
ant
ompiler work. In [10℄ we have proposed an eÆ
ient
ompilerte
hnique based on the Fourier-Motzkin elimination method for
al
ulating the outer loops bounds.The eÆ
ien
y of the proposed methodology lies in that we managed to
onstru
t a
ompa
t system ofinequalities that allows the generation of tiled
ode, and thus
ompensates for the doubly exponential
omplexity of the Fourier-Motzkin method. The simpli�ed system of inequalities enumerates someredundant tiles, as well, but the run-time overhead proves to be negligible in pra
ti
e, sin
e theinternal points of these tiles are never a

essed.As far as the traversing the internal of a tile is
on
erned, in [10℄ we further propose a method totransform arbitrary shaped tiles into re
tangular ones. By doing so, only re
tangular tiles need tobe traversed and the expressions required in the n innermost loop bounds evaluation are signi�
antlyredu
ed. Formally, the iteration spa
e of a tile (Tile Iteration Spa
e - TIS) is transformed into anew iteration spa
e, the Transformed TIS (TTIS) by using a non-unimodular transformation. The
orresponden
e between the TIS and the TTIS is s
hemati
ally depi
ted in Figure 3. It should beintuitively obvious that the TTIS
an be more easily traversed in
omparison to the TIS, althoughspe
ial
are needs to be taken so that only valid points (e.g. bla
k dots in Figure 3) are a

essed.3.2. ParallelizationThe sequential tiled
ode is parallelized a

ording to the SPMD model in order to provide portableMPI C++
ode. The parallelization pro
ess addresses issues su
h as
omputation distribution, datadistribution and inter-pro
ess
ommuni
ation primitives. We will mainly fo
us on the
ommuni
ations
heme, as the
omputation and data distribution are more extensively analyzed in [10℄.Ea
h MPI pro
ess assumes the exe
ution of a sequen
e of tiles along the longest dimension ofthe tile iteration spa
e, as previous work in the �eld of UET-UCT graphs ([9℄) suggests that this

4
P’

H’

1

2

Transformed Tile Iteration Space (TTIS) Tile Iteration Space (TIS)

2

1

j

j

j’

j’0 5 10

5

10

15

20

0 5 10

5

10

Figure 3. Transformation of arbitrary shaped tile into re
tangulars
heduling is optimal. The n outermost loops of the sequential tiled
ode are reordered, so that the one
orresponding to the maximum-length dimension be
omes the innermost of the n. Ea
h worker pro
essis identi�ed by an n�1 dimensional pid ve
tor dire
tly derived from its MPI rank, so that it undertakesthe exe
ution of all tiles whose n�1 outermost
oordinates mat
h pid. Also, data distribution followsthe
omputer-owns rule, e.g. ea
h worker pro
ess owns the data it
omputes. By adopting the above
omputation and data distribution, the required SPMD model for the parallelization of the sequentialtiled
ode is relatively simple and eÆ
ient, as far as the overall performan
e is
on
erned.Finally, in order for the worker pro
esses to be able to ex
hange data,
ertain
ommuni
ationprimitives need to be supplied to the parallel
ode. We have implemented two
ommuni
ation patterns,namely one based on blo
king MPI primitives (MPI Send, MPI Re
v), and an alternative one basedon non-blo
king MPI primitives (MPI Isend, MPI Ire
v). In the �rst
ase (blo
king), ea
h workerpro
ess initially re
eives all non-lo
al data required for the
omputation of a tile, then
omputes thattile, and �nally sends all
omputed data required by other pro
esses (Table 1). Note that in this
ase
ommuni
ation and
omputation phases are distin
t and do not overlap. In the se
ond
ase(non-blo
king), ea
h worker pro
ess
on
urrently
omputes a tile, re
eives data required for the nexttile and sends data
omputed at the previous tile (Table 2). This
ommuni
ation s
heme allows forthe overlapping of
omputation and
ommuni
ation phases.for(tile t)fMPI Re
v(t);Compute(t);MPI Send(t);gTable 1Blo
king
ommuni
ation s
heme
for(tile t)fMPI Ire
v(t+1);MPI Isend(t-1);Compute(t);MPI Waitall;gTable 2Non-blo
king
ommuni
ation s
hemeIt is obvious that the non-blo
king
ommuni
ation s
heme allows for overlapping of
omputationwith
ommuni
ation only as long as both the MPI implementation and the underlying hardware in-frastru
ture support it, as well. That is, the MPI implementation should make a distin
tion betweenstandard and non-blo
king
ommuni
ation primitives, so as to exploit the bene�ts of the advan
ed
ommuni
ation pattern. On the other hand, the underlying hardware/network infrastru
ture mustalso support DMA-driven non-blo
king
ommuni
ation. Unfortunately, this is not the
ase withthe used MPICH implementation for
h p4 ADI-2 devi
e, as indi
ated by the relative performan
eof both s
hemes. In order to evaluate our proposed advan
ed s
heduling s
heme also in terms of

5
ommuni
ation-
omputation overlapping, we thus resorted to syn
hronous MPI
ommuni
ation prim-itives for the blo
king s
heme (e.g MPI Ssend instead of MPI Send). By doing so we were able to simu-late the relative performan
e of both
ommuni
ation patterns, despite the implementation/hardwarerestri
tions.4. Experimental ResultsIn order to evaluate the performan
e bene�ts obtained by the proposed advan
ed s
heduling s
heme,we have
ondu
ted a series of experiments using mi
ro-kernel ben
hmarks. More spe
i�
ally, wehave automati
ally parallelized the Gauss Su

essive Over-relaxation (SOR - [11℄) and the TextureSmoothing Code (TSC - [12℄) mi
ro-kernel ben
hmarks, and we have experimentally veri�ed theoverall exe
ution time for di�erent tiling transformations, blo
king and non-blo
king
ommuni
ations
hemes and various iteration spa
es. Our platform is an 8-node dual-SMP
luster inter
onne
tedwith FastEthernet. Ea
h node has 2 Pentium III CPUs at 800 MHz, 128 MB of RAM and 256 KB of
a
he, and runs Linux with 2.4.20 kernel. We used g++
ompiler version 2.95.4 with -O3 optimizationlevel. Finally, we used MPI implementation MPICH v. 1.2.5,
on�gured with the following options:--with-devi
e=
h p4 --with-
omm=shared.4.1. SORThe SOR loop nest involves a
omputation of the form A[t; i; j℄ = f(A[t; i� 1; j℄; A[t; i; j� 1℄; A[t�1; i+1; j℄; A[t�1; i; j+1℄; A[t�1; i; j℄), while the iteration spa
e isM�N�N . The dependen
e matrixof the algorithm is D = 24 0 0 1 1 11 0 �1 0 00 1 0 �1 0 35. Be
ause of the negative elements of D, skewingneeds to be applied to the original algorithm for the re
tangular tiling to be valid. An appropriateskewing matrix is T = 24 1 0 01 1 02 0 1 35, sin
e TD � 0, that is the skewed algorithm
ontains onlynon-negative dependen
ies. We will apply both re
tangular and non-re
tangular tiling to the skewediteration spa
e, and evaluate both the blo
king and the non-blo
king
ommuni
ation s
heme. Morespe
i�
ally, the re
tangular tile is provided by the matrix Pr = 24 x 0 00 y 00 0 z 35, while the proposednon-re
tangular tiling transformation, as obtained from the algorithm's tiling
one, is des
ribed by thematrix Pnr = 24 x 0 00 y 0x 0 z 35. Note that in ea
h
ase, the tile shape
an be determined from the
olumnve
tors of the respe
tive transformation matrix (Pr or Pnr), while the tile size depends on the valuesof the integers x, y and z. However, both tiles have equal sizes, sin
e jPrj = jPnrj = xyz, so that theper-tile
omputation volume is equal in both
ases. Moreover, sin
e in both
ases tiles will be mappedto pro
essors a

ording to the third dimension, the per-tile
ommuni
ation volume and the numberof MPI pro
esses required are the same, as pro
ess mapping and inter-pro
ess
ommuni
ation areimpli
itly determined by the outermost two dimensions. Consequently, any di�eren
es in the overallexe
ution times should be attributed to the di�erent s
heduling that results from the two tilingtransformations, as well as to the
ommuni
ation pattern (blo
king or non-blo
king).Experimental results for the SOR mi
ro-kernel are depi
ted in Figure 4. In all
ases, non-re
tangulartiling outperforms the re
tangular tiling, while the non-blo
king
ommuni
ation pattern is more eÆ-
ient than the blo
king one, at least on a simulation level. In other words, the experimental results
omply to the theoreti
ally anti
ipated performan
e.4.2. TSCTSC algorithm
an be written as a triply nested loop with a
omputation of the form b[t; i; j℄ =f(b[t; i � 1; j � 1℄; b[t; i � 1; j℄; b[t; i � 1; j + 1℄; b[t; i; j � 1℄; b[t � 1; i; j + 1℄; b[t � 1; i + 1; j � 1℄; b[t �1; i+1; j℄; b[t� 1; i+1; j +1℄) (iteration spa
e T �N �N). The dependen
e matrix of the algorithm

6

5

10

15

20

25

30

35

40

5 10 15 20 25 30 35 40

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Overall Execution Time for SOR (256x128x128 Iteration Space)

Rectangular tiling (blocking)
Rectangular tiling (non-blocking)
Non-rectangular tiling (blocking)

Non-rectangular tiling (non-blocking)

30

35

40

45

50

55

60

65

20 40 60 80 100 120 140 160

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Overall Execution Time for SOR (128x256x256 Iteration Space)

Rectangular tiling (blocking)
Rectangular tiling (non-blocking)
Non-rectangular tiling (blocking)

Non-rectangular tiling (non-blocking)

Figure 4. Experimental Results for SORis D = 24 0 0 0 0 1 1 1 11 1 1 0 0 �1 �1 �11 0 �1 1 �1 1 0 �1 35. Sin
e D also
ontains negative elements, properskewing needs to be applied for the re
tangular tiling transformation to be valid. We
onsider theskewing matrix T = 24 1 0 01 1 02 1 1 35. We will apply tiling transformation Pnr = 24 x 0 0�x y 0�x �y z 35 tothe original iteration spa
e, and re
tangular tiling (Pr = 24 x 0 00 y 00 0 z 35) to the skewed iteration spa
e.As in the SOR mi
ro-kernel ben
hmark, in both
ases (re
tangular and non-re
tangular tilingtransformation) we have an equal tile size (jPr j = jPnr j = xyz), that results to the same per-tile
om-putation volume. Furthermore, tiles are mapped to MPI pro
esses a

ording to the third dimension.Experimental results are depi
ted in Figure 5. We observe that, as in SOR, the non-blo
king
ommuni
ation s
heme with the appli
ation of non-re
tangular tiling delivers the best overall per-forman
e. In this
ase however, both tiling transformations deliver similar performan
e under theblo
king
ommuni
ation s
heme, while non-re
tangular tiling transformation is more bene�
ial in
ase of the non-blo
king
ommuni
ation s
heme.5. Con
lusionsSummarizing, we have
ombined the notions of arbitrary tiling transformation and overlapping
om-muni
ation and
omputation and in
orporated these aspe
ts into a
omplete framework to automati-
ally generate parallel MPI
ode. We have addressed all issues regarding parallelization, su
h as taskallo
ation, sweeping arbitrary shaped tiles and implementation of appropriate
ommuni
ation prim-itives. We have experimentally evaluated our work, and supplied simulation results for appli
ation-kernel ben
hmarks that verify the high performan
e gain obtained by the advan
ed s
heduling s
heme.REFERENCES[1℄ P. Tang, J. Xue, Generating EÆ
ient Tiled Code for Distributed Memory Ma
hines, ParallelComputing 26 (11) (2000) 1369{1410.[2℄ R. Andonov, P. Calland, S. Niar, S. Rajopadhye, N. Yanev, First Steps Towards Optimal ObliqueTile Sizing, in: 8th International Workshop on Compilers for Parallel Computers, Aussois, 2000,pp. 351{366.

7

10

12

14

16

18

20

5 10 15 20 25 30

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Overall Execution Time for TSC (128x128x128 Iteration Space)

Rectangular tiling (blocking)
Rectangular tiling (non-blocking)
Non-rectangular tiling (blocking)

Non-rectangular tiling (non-blocking)

44

46

48

50

52

54

56

58

60

10 20 30 40 50 60 70 80

T
i
m
e

(
i
n

s
e
c
)

Tile Size (in K)

Overall Execution Time for TSC (128x256x256 Iteration Space)

Rectangular tiling (blocking)
Rectangular tiling (non-blocking)
Non-rectangular tiling (blocking)

Non-rectangular tiling (non-blocking)

Figure 5. Experimental Results for TSC[3℄ E. Hodzi
, W. Shang, On Supernode Transformation with Minimized Total Running Time, IEEETrans. on Parallel and Distributed Systems 9 (5) (1998) 417{428.[4℄ J. Xue, W.Cai, Time-minimal Tiling when Rise is Larger than Zero, Parallel Computing 28 (6)(2002) 915{939.[5℄ E. Hodzi
, W. Shang, On Time Optimal Supernode Shape, in: Pro
eedings of the InternationalConferen
e on Parallel and Distributed Pro
essing Te
hniques and Appli
ations (PDPTA), LasVegas, CA, 1999.[6℄ K. Hogstedt, L. Carter, J. Ferrante, Sele
ting Tile Shape for Minimal Exe
ution time, in: ACMSymposium on Parallel Algorithms and Ar
hite
tures, 1999, pp. 201{211.[7℄ J. Xue, Communi
ation-Minimal Tiling of Uniform Dependen
e Loops, Journal of Parallel andDistributed Computing 42 (1) (1997) 42{59.[8℄ G. Goumas, A. Sotiropoulos, N. Koziris, Minimizing Completion Time for Loop Tiling withComputation and Communi
ation Overlapping, in: Pro
eedings of IEEE International Paralleland Distributed Pro
essing Symposium (IPDPS'01), San Fran
is
o, 2001.[9℄ T. Andronikos, N. Koziris, G. Papakonstantinou, P. Tsanakas, Optimal S
heduling for UET/UET-UCT Generalized N-Dimensional Grid Task Graphs, Journal of Parallel and Distributed Com-puting 57 (2) (1999) 140{165.[10℄G. Goumas, N. Drosinos, M. Athanasaki, N. Koziris, Compiling Tiled Iteration Spa
es for Clusters,in: Pro
eedings of the IEEE International Conferen
e on Cluster Computing, Chi
ago, 2002.[11℄G. E. Karniadakis, R. M. Kirby, Parallel S
ienti�
 Computing in C++ and MPI : A SeamlessApproa
h to Parallel Algorithms and their Implementation, Cambridge University Press, 2002.[12℄S. Pande, T. Bali, A Computation + Communi
ation Load Balan
ed Loop Partitioning Methodfor Distributed Memory Systems, Journal of Parallel and Distributed Computing 58 (3) (1999)515{545.

