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Introduction

Runtime code generation is not a new concept [1] and has been widely used for
improving the performance of programs at runtime. Typical examples include
Just-In-Time (JIT) compilation [2], [3] and dynamic optimization systems [4],
[5]. A class of programs that can benefit from runtime code generation are
programs with an execution path that is determined by runtime data, which
remain unchanged during execution and their size is constant with regard to
the total size of the input data. An example of such a program is a huffman
decoder.

Huffman Coding

Huffman coding is an entropy encoding scheme for lossless data compression.
It builds optimal prefix codes 1 that achieve size compression by using less bits
for frequent symbols. Huffman codes are created based on the frequencies (or
equivalently the probabilities) of the symbols of the input data. A binary tree,
called the huffman tree, is built and used for both the encoding and the decoding
of the data ([6]).

Algorithm 1: Huffman tree creation

// Si:symbols, Fi:frequencies, 1 ≤ i ≤ N

Q = ∅

for i = 1 to N do Q.append(LeafNode(Si,Fi))

for i = 1 to N − 1 do
node = InternalNode()

node.l = Q.extractMinFreq()
node.r = Q.extractMinFreq()
node.frequency = node.l.frequency + node.r.frequency

Q.append(node)

end

1prefix codes map input symbols to variable length bitstrings, in which no bitstring is

also the prefix of another bitstring. This property simplifies the decoding, since it eliminates

ambiguities.
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In a huffman tree each input symbol is represented by a leaf node. Moreover,
each node is associated with a frequency number: for the leaf nodes it is the
symbol frequency, while for the internal nodes it is the sum of the frequencies of
their two children. The creation of a huffman tree is presented in Algorithm 1.
The algorithm operates on a set of sub-trees, which initially contains all the
leaf nodes. At each step the two sub-trees with the minimum frequencies are
extracted from the set and used as children of a new internal node. The new
node is inserted into the set and the procedure is repeated until there is only
one node left.
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Figure 1: Example of a huffman tree for symbols (a,b,c,d,e,f) with corresponding
frequencies (45, 13, 12, 16, 9, 5)

An example of a huffman tree (taken from [6]) is presented in Figure 1.
The encoding process maps each symbol to a bitstring that is appended to the
encoded output. The bitstring for each symbol is determined by the path from
the root node to the corresponding leaf node. For example, given the huffman
tree of Figure 1, the bitstring for symbol a is “0”, while the bitstring for symbol
e is “1101”. Decoding of a huffman code is performed by iterating the tree based
on each bit (left for 0, right for 1) until a leaf is encountered (see Algorithm 2).

Algorithm 2: Huffman Decoding
n = tree

repeat
n = (Data.nextBit() == 0) ? n.l : n.r
if n.isLeaf() then

output n.getSymbol()
n = tree

end

until Data end

The huffman decoding algorithm has two inputs: the huffman tree and the
encoded bitstring. The encoded data is the main input of the algorithm in terms
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of size, while the huffman tree is used to guide the decompression procedure.
Its possible to construct a specialized decoder to perform the decompression of
the input data by incorporating the huffman tree into the decoding procedure.

LLVM Compiler Infrastructure

The Low Level Virtual Machine [7] (LLVM) project is a modular compiler
infrastructure software suite. It is built around an Intermediate Representa-
tion (IR) called the LLVM virtual instruction set, which is a: “low-level object
code representation that uses simple RISC-like instructions, but provides rich,
language-independent, type information and dataflow (SSA) information about
operands”2. The highly modular nature of the LLVM codebase makes it ideal
for implementing the code generation for the huffman decoders.

The LLVM software provides rich interfaces for building, optimizing, com-
piling and linking dynamically into the current process modules and functions.
Each function contains a number of basic blocks, which consist of a list of in-
structions that execute sequentially (e.g. they do not contain branches) and are
finalized by a terminator instruction (e.g. branch or return).

Dynamic Code Generation for Huffman Decoders

The code for the huffman decoder is generated by traversing the huffman tree
and creating the appropriate basic blocks. Algorithm 3 shows a simplified ver-
sion of the recursive depth-first iterating of the tree. We assume that two basic
blocks have been created: bbRoot, which is the basic block that corresponds to
the root node of the tree and bbRestart, which checks if there is more input
available and either jumps to bbRoot again or exits. Initially the iterateTree()
is called with bbRoot and the root of the tree as arguments. If the node is a leaf,
then the code generated appends the corresponding symbol to the output and
jumps (unconditionally) to the bbRestart. If the node is an internal node, then
two new basic blocks are created along with the code for the conditional branch
to one of these, based on the input. The iterateTree() is called recursively
for these two new basic blocks.

The actual implementation is more complex, since it requires the creation
of φ nodes in the SSA form (phi instruction in LLVM) for keeping track of the
remaining data that need to be decompressed. After the creation of the function
that implements the decoder a number of optimization passes are called to opti-
mize it (e.g inlining) and then the function is compiled at runtime. The creation
of the decoder can be performed at the compression side of the communication
channel. Instead of the huffman tree, a serialized version of the optimized LLVM
code can be transmitted along with the compressed data.

2http://www.llvm.org
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Algorithm 3: Code Creation

iterateTree(node, bb) {
if node.isLeaf() then

bb.insertCode(output node.getSymbol())
bb.insertCode(br bbRestart)

else
bbl = BasicBlock()

bbr = BasicBlock()

bb.insertCode(test = Data.nextBit())
bb.insertCode(br test bbl bbr)

iterateTree(node.l, bbl)

iterateTree(node.r, bbr)
end

}
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Figure 2: Call flow graph of the resulting huffman decoder for the example of
Figure 1
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Experimental Evaluation

It is expected that the runtime generation of specialized huffman decoders will
improve the performance of the decompression, because it will reduce the num-
ber of branches and allow for more effective branch prediction. To evaluate and
qualify this improvement we performed a series of tests on randomly created
files (512 MB each) with entropy values ranging from 1.5 to 8. The entropy
value of a file constitutes the theoretical limit for the compression ratio (bits
per symbol required) and thus give us a metric for the compressibility of the
file.

The experiments were performed on a machine with an Intel Core2 processor
(2.0 GHz), 8 GB of RAM and running a 64-bit Linux OS. The times measured
do not include the time spent for the code generation, since we consider that
this procedure takes place during the compression. The results are presented in
Figure 3 and include the time speedups (

torig−tcgen

torig
) for the entropy values of

the files.

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

file entropy

0.1

0.2

0.3

tim
e 

sp
ee

du
p

Figure 3: Performance improvement (
torig−tcgen

torig
) from applying dynamic code

generation for the huffman decoder for various randomly created files

The speedup improvement is 23.2% at average and ranges from 32.2% to
14.2%. Another observation to be made is that, although there isn’t a strict
relation between the entropy of the file and the speedup achieved, the results
indicate that higher entropy values lead to larger speedup. This happens be-
cause as the entropy increases, so does the number of branches and branches
mispredections making the code generation technique more beneficial.
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