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ABSTRACT
This paper presents an overview of our work, concerning a com-
plete end-to-end framework for automatically generating message
passing parallel code for tiled nested for-loops. It considers general
parallelepiped tiling transformations and general convex iteration
spaces. We address all problems regarding both the generation of
sequential tiled code and its parallelization. We have implemented
our techniques in a tool which automatically generates MPI paral-
lel code and conducted several series of experiments, concerning
the compilation time of our tool, the efficiency of the generated
code and the speedup attained on a cluster of PCs. Apart from con-
firming the value of our techniques, our experimental results show
the merit of general parallelepiped tiling transformations and verify
previous theoretical work on scheduling-optimal tile shapes.

Keywords
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1. INTRODUCTION
During the past decades, explicit parallelism has been achieved
using the two general parallel architectures: shared memory and
distributed memory. Extensive discussions and practical experi-
ence have led to the conclusion that shared memory machines, al-
though easy to program, lack in scalability, while on the other hand
distributed memory machines are much more scalable but are de-
finetely more difficult to program. In the past few years it has be-
come obvious, that a two-level hybrid model is the most promising
architecture to provide high performance and scalability. Shared
memory machines or Symmetric Multi-Processors (SMPs) consist-
ing of 2-16 processors form the lower level of this model. A large
number of SMPs is interconnected with a custom or proprietary
interconnection network, to form the higher distributed memory
level. Thus, all previous experience and research work on both ar-
chitectures is now combined to enhance the characteristics of this
new two-level model.

Programming for two-level parallel architectures can be a very bur-
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densome task, since one has to take into consideration all special
characteristics of the underlying hardware (processor speed, cache
and cache-line sizes, interconnection network bandwidth and la-
tency etc.). Researchers have proposed a large number of optimiza-
tions that can be applied on serial algorithms to optimize perfor-
mance when running in parallel over a supercomputing platform.
Such optimizations mainly concern loop transformations that en-
hance parallelism [8, 25], exploit cache locality [17, 24] or reduce
communication and synchronization needs [21, 23]. Without such
optimizations, the real performance of a parallelized algorithm may
be far from the peak performance of the parallel platform. How-
ever, performing loop transformations by hand is very often impos-
sible even for the most experienced programmers, let alone for the
general scientists (physical/chemical scientists, engineers) who are
the large majority of parallel programmers. In these cases, a paral-
lelizing compiler is used to both parallelize and optimize the serial
code [1, 2, 6, 10]. The automatically generated parallel code best
exploits the characteristics of the underlying parallel architecture.

One of the most popular loop transformations is tiling or supern-
ode transformation [16]. Tiling groups neighboring loop iterations
together to form a tile or supernode. Researchers have proposed
the use of tiling in order to better exploit cache locality in unipro-
cessors and reduce communication frequency in distributed mem-
ory multiprocessors. In the latter case, a lot of research has been
done concerning the selection of a proper parallelepiped tile shape
which will further reduce communication volume and allow for a
more efficient scheduling scheme by minimizing the idle times of
processors [5, 7, 13, 14, 15]. When grouping neighboring iterations
in orthogonal parallelograms, code generation for the transformed
space is quite simple and can be accomplished even by hand. How-
ever, when grouping in general parallelepiped tiles, hand coding
is impossible. In addition, when the shape of the iteration space
is non-rectangular as well, then the compilation process is greatly
complicated, while the generated code may result to be very ineffi-
cient.

In this paper we present a complete compilation approach for ar-
bitrarily tiled iteration spaces. By “arbitrary” tiling transforma-
tions, we mean general parallelepiped groupings (for simplicity
also referred to as non-rectangular) in contrast to the simple or-
thogonal (or rectangular). The generated code complies to the gen-
eral message-passing programming paradigm, which in our case is
implemented with the use of the MPI (Message Passing Interface)
library. This code best suits the upper level of the two-level paral-
lel architecture described before, but can be alternatively executed
on both levels, using each processor as a distinct processing unit,
which communicates with other units via message-passing, regard-



less of the neighboring unit being a processor within the same SMP
or a processor in a distant node. In our approach, we implement a
new method which greatly decreases the compilation time and si-
multaneously improves the quality of the generated parallel code.
We address all problems concerning the parallelization of an arbi-
trarily tiled iteration space, including sequential tiled code gener-
ation, iteration distribution, data distribution and message-passing
code generation.

The rest of the paper is organized as follows: Section 2 presents the
algorithmic model and discusses tiling transformation in greater
detail. Section 3 presents our approach for generating sequential
tiled code, i.e. code that reorders the initial loop order as dictated
by the selected tiling transformation. Section 4 presents the paral-
lelization process of the sequential tiled code, including iteration
distribution, data distribution and message-passing code genera-
tion. In Section 5 we present experimental results which exhibit
the acceleration in the compilation process that our method incurs,
along with the overall improvement in parallel time due to non-
rectangular tiling transformations.

2. PRELIMINARIES
2.1 The Model of the Algorithms
In this paper we consider algorithms with perfectly nested FOR-
loops that is, our algorithms are of the form:

FOR j1=l1 TO u1 DO
FOR j2=l2 TO u2 DO

...
FOR jn=ln TO un DO

Loop Body
ENDFOR

...
ENDFOR

ENDFOR

where l1 and u1 are rational-valued parameters, lk and uk (k =
2...n) are of the form:
lk = max(�fk1(j1, . . . , jk−1)�, . . . , �fkr(j1, . . . , jk−1)�) and
uk = min(�gk1(j1, . . . , jk−1)�, . . . , �gkr(j1, . . . , jk−1)�), where
fki and gki are affine functions. Therefore, we are not only deal-
ing with rectangular iteration spaces, but also with more general
convex spaces, with the only assumption that the iteration space is
defined as the bisection of a finite number of semi-spaces of the
n-dimensional space Zn.

2.2 Tiling (Supernode) Transformation
When parallelizing a nested for-loop in a distributed memory archi-
tecture, it is crucial to mitigate the communication overhead. De-
spite the development of high-performance System Area Networks
used to interconnect the nodes in a distributed memory machine,
the communication startup latency has always been a great concern
in parallel computing. Coarse-grained parallelism is traditionally
proposed as the most suitable form of parallelism when the pro-
cessing nodes do not physically share a common memory. Several
linear loop transformations are considered to elevate coarse-grained
parallelism when inherent in an algorithm. Unfortunately, in many
cases nested loops cannot be linearly transformed to achieve this
kind of parallelism. In these cases, coarse-grained parallelism is
forced with the application of a non-linear loop transformation, the
tiling or supernode transformation ([20]).

Tiling transformation groups neigboring iterations of a nested loop

to form a “tile” (or “supernode”). Tiles are assigned to proces-
sors using a pre-defined mapping scheme and executed as a com-
plete computation unit. Communication occurs before and after the
computation of the iterations within the tile. In this way, communi-
cation data are packed into larger messages thus reducing commu-
nication frequency and the consequent startup overhead. Extensive
research has investigated the impact of the tile size and shape on
the performance of a parallelized nested loop ([5, 7, 13, 14, 15, 20,
26]). Researchers have proven that analyzing the data dependences
of the original algorithm, one can optimally choose between vari-
ous tile shapes. Optimality in our case means minimum communi-
cation and/or minimum idle processor time. Tile shape is proven to
affect both communication volume and processor idle times.

Despite the profound benefits of tiling transformation, a number of
important issues concerning code generation need to be addressed.
Code generation for tiled iteration spaces can be a very burdensome
task, especially when non-rectangular tile shapes are concerned.
In several cases compilation time may be impractical, while the
memory space required to apply the proper compilation techniques
may exceed the size of the virtual memory. More importantly, even
when compilation succeeds in acceptable time, the generated code
may be of poor quality and thus not capable of enhancing the theo-
retical benefits of tiling transformations. In the rest of this paper we
shall describe a complete end-to-end framework, used to produce
efficient parallel tiled code in practical compilation times. We have
implemented a compiler (Fig. 1), which, according to the depen-
dence constraints of the initial code finds the optimal tiling transfor-
mation and, reordering the execution order of iterations, produces
the sequential tiled code. In the sequel, sequential code is auto-
matically transformed to MPI (Message Passing Interface) parallel
code. In this paper we focus on issues concerning the last two steps
of the automatic procedure: the generation of the sequential tiled
code and its parallelization.

3. SEQUENTIAL CODE GENERATION
When generating code for a tiled nested loop, we essentially need
to transform a code segment of n nested for-loops into another one
with 2n nested for-loops. The n outer loops enumerate the tiles,
while the n interior loops traverse the internal points of the tiles.

Example 1: Consider the following simple code segment:

FOR j1 = 0 TO 11 DO
FOR j2 = 0 TO 11 DO
A[j1,j2]=1/2*(A[j1-1,j2]+A[j1-1,j2-1]);

ENDFOR
ENDFOR

If we apply tiling transformation to form groups (tiles) of 4 × 4
iterations (Fig. 2), then we need to transform the previous code as
follows:

FOR t1 = 0 TO 2 DO
FOR t2 = 0 TO 2 DO
FOR j1 = 4 ∗ t1 TO 4 ∗ t1 + 3 DO
FOR j2 = 4 ∗ t2 TO 4 ∗ t2 + 3 DO
A[j1,j2]=1/2*(A[j1-1,j2]+A[j1-1,j2-1]);

ENDFOR
ENDFOR

ENDFOR
ENDFOR �

When both the initial iteration space and the tile are rectangular, the
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calculation of the loop bounds can be carried out very efficiently,
as in Example 1. However, when the tiling transformation and/or
the iteration space are not rectangular, the calculation of the new
loop bounds can be a very complex and time consuming compiler
work. Ancourt and Irigoin in [3], have constructed a proper set
of inequalities describing the initial iteration space and the tiling
transformation and propose the use of the Fourier-Motzkin elimi-
nation (FM) on the set to obtain code that traverses the initial space
as dictated by the tiling transformation. Unfortunately, FM is an ex-
tremely complex method (doubly exponential) and thus the above
method may result to be impractical if special care is not taken.

Example 2: For the code segment of Example 1, both communica-
tion and scheduling criteria imply that a tiling transformation such
as the one shown in Fig. 3, should lead to more efficient parallel
code. However, when writing down the transformed nested loops,
according to the method described in [3], we get the following code
segment:

FOR t1=-3 TO 2 DO
FOR t2=max(0,-1-t1) TO min(2,2-t1) DO
FOR j1=max(0,4*t1+4*t2) TO

min(11,6+4*t1+4*t2) DO
FOR j2=max(4*t2,-3-4*t1+j1) TO

min(4*t2+3,-4*t1+j1) DO
A[j1,j2]=1/2*(A[j1-1,j2]+A[j1-1,j2-1]);

ENDFOR
ENDFOR

ENDFOR
ENDFOR �

In [11] we have proposed a novel method for calculating the outer
loop bounds, which considerably reduces the time required for the
generation of the sequential tiled code. This simplification is due
to the fact that we managed to cope with the same problem by con-

structing a system of inequalities with half the number of inequali-
ties and half the number of unknown variables. FM is now applied
on this greatly simplified set, which vastly accelerates the compi-
lation time. The tradeoff in constructing such a smaller system of
inequalities is the inexact description of the space in consideration.
In fact, our method includes some redundant tiles in the enumera-
tion, but this run-time overhead proves to be negligible in practice,
since the internal points of these redundant tiles are never accessed.

Note the difference in the tiled code of Examples 1 and 2. In order
to scan the internal points of the tiles in Example 2 (non-rectangular
tiling), the corresponding loop bounds contain min and max func-
tions of affine expressions containing the surrounding loop control
variables. In some cases these functions may consist of a very large
number of expressions which need to be evaluated at run-time. This
fact greatly degrades performance and may lead to poor parallel ex-
ecution times, so that the theoretical benefit from the application of
non-rectangular tiling is not revealed in practice. In order to reduce
this run-time overhead, we have presented a new method based on
the use of a non-unimodular transformation ([11]). Our goal is to
reduce the number of affine expressions in the loop evaluation of
the loop bounds. The method transforms any non-rectangular tile
(Tile Iteration Space-TIS) into a rectangular one (Transformed Tile
Iteration Space-TTIS) using transformation H ′ (Fig. 4), then tra-
verses the rectangular tile and finally accesses the original point
by using the inverse transformation P ′. Note that, the transformed
space may contain many points whose anti-image is not an inte-
ger point in the initial Tile Iteration Space. These points are de-
picted with white dots in Fig. 4 and are called “holes”. However
holes can be easily avoided when scanning TTIS by using specific
increment steps in the n inner loop indexes. The appropriate in-
crement steps are directly obtained from the Hermite Normal Form
of the transformation matrix, as proved in [19, 9] and discussed
in [11]. Thus, we have managed to greatly reduce the number of
affine expressions in the loop bounds of the transformed loop, with
the overhead of a linear transformation required for each iteration



from the transformed iteration space to the initial iteration space.
The final outcome of the method is a minor run-time overhead for
non-rectangular tiling transformations, since the integer multipli-
cations required for the transformations are efficiently executed by
any modern microprocessor.
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Figure 4: Traverse the TIS with a non-unimodular transfor-
mation

Example 3: If we generate sequential tiled code for the tiling trans-
formation presented in Example 2 and shown in Fig. 3, using our
method, we get the following code:

FOR t1=-3 TO 2 DO
FOR t2=max(0,-1-t1) TO min(2,2-t1) DO
FOR j′1=0 TO 3 DO
FOR j′2=0 TO 3 DO

j1=j′1+j′2
j2=j′2
A[j1,j2]=1/2*(A[j1-1,j2]+A[j1-1,j2-1])

ENDFOR
ENDFOR

ENDFOR
ENDFOR �

Note in Example 3, that we have greatly reduced the min and max
functions in the evaluation of loop bounds. In fact, the code seg-
ment shown in Example 3 is correct only for internal tiles (that is,
tiles that do not cross the iteration space boundaries). However,
as depicted in Fig. 3, boundary tiles may not be equal to the inter-
nal ones. We can cope with this problem by inserting some more
control variables only in the few cases of boundary tiles. Since
in most real applications the number of boundary tiles is minimal
compared to the number of internal tiles, this technique does not
add considerable run-time overhead.

4. DATA PARALLEL CODE GENERATION
The parallelization of the sequential tiled code involves issues such
as computation distribution, data distribution and communication
among processors. Tang and Xue in [22] addressed the same is-
sues for rectangularly tiled iteration spaces. We can also generate

efficient data parallel code for non-rectangular tiles without impos-
ing any further complexity. We consider that the memory of the
underlying architecture is physically distributed among processors,
essentially referring to the upper level of a two-level parallel archi-
tecture. Processors perform computations on local data and com-
municate with each other with messages in order to exchange data
that reside to remote memories. Practically, we can implement this
model with a cluster of PCs (either uniprocessor or multiproces-
sor) interconnected with a custom or proprietary interconnection
network, using a message-passing software platform like MPI. The
underlying architecture is viewed by the compiler as a (n − 1)-
dimensional processor mesh. Thus, each processor is identified by
a (n − 1)-dimensional vector denoted �pid.

4.1 Computation and Data Distribution
The general intuition in our approach is that since the iteration
space is already transformed into a space of rectangular tiles, then
each processor can work on its local share of “rectangular” tiles
and, following a proper memory allocation scheme, perform oper-
ations on rectangular data spaces as well. After all computations
in a processor have been completed, locally computed data can be
written back to the appropriate locations of the global data space.
In this way, each processor essentially works on iteration and data
spaces, both of which are rectangular, and properly translates from
its local data space to the global one.

Computation distribution determines which computations of the se-
quential tiled code will be assigned to which processor. We assign
to each processor a row of tiles parallel to the longest dimension of
the problem space, since previous work [4] in the field of UET-UCT
task graphs has shown that if we map all tiles along the dimension
with the maximum length (i.e. maximum number of tiles) to the
same processor, then the overall scheduling is optimal.

Data distribution decisions affect the communication volume, since
data that reside in one node may be needed for the computation in
another. In our approach, we follow the “computer-owns” rule,
which dictates that a processor owns the data it writes and thus,
communication occurs when one processor needs to read data com-
puted by another. However, with non-rectangular tiling, each pro-
cessor should own a non-rectangular subset of the original data
space. We allocate memory for the data computed by the rectan-
gular transformed space (TTIS), taking care to condense the ac-
tual points and ignore the holes. Each processor allocates an n-
dimensional rectangular space equal to the number of actual points
of the Transformed Tile Iteration Space multiplied by the number
of tiles assigned to the particular processor (Fig. 5). We call this
space Local Data Space (LDS).

4.2 Communication
Using the iteration and data distribution schemes described before,
data that reside in the local memory module of one processor may
be needed by another due to algorithmic dependences. In this case,
processors need to communicate via message passing. The two
fundamental issues that need to be addressed regarding communi-
cation are the specification of the processors each processor needs
to communicate with, and the determination of the data that need
to be transferred in each message.

As far as the communication data are concerned, we focus on the
communication points, e.g. the iterations that compute data read by
another processor. We further exploit the regularity of the Trans-
formed Tile Iteration Space to deduce simple criteria for the com-
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Figure 5: Local Data Space LDS and Transformed Tile Itera-
tion Space TTIS

munication points at compile time. More specifically, as depicted in
Fig. 6, while in the initial iteration space communication points be-
long to a non-rectangular parallelepided, in the transformed space
they are restricted into a rectangle. Thus they can be easily deter-
mined by restricting a loop variable among constants.

Communication takes place before and after the execution of a tile.
Before the execution of a tile, a processor must receive all the es-
sential non-local data computed elsewhere, and unpack these data
to the appropriate locations in its Local Data Space. Dually, af-
ter the completion of a tile, the processor must send part of the
computed data to the neighboring processors for later use. Summa-
rizing, the generated data parallel code for the loop of §2.1 would
have a form similar to the following:

DOACROSS pid1=lS1 TO uS
1 DO

...
DOACROSS pidn−1=lSn−1 TO uS

n−1 DO
/*Sequential execution of tiles*/
FOR tS=lSn TO uS

n DO
/*Receive data from neighboring tiles*/
RECEIVE DATA(. . .);
/*Traverse the internal of the tile*/
FOR j′1=l′1 TO u′

1 STEP=c1 DO
...
FOR j′n=l′n TO u′

n STEP=cn DO
EXECUTE LOOP BODY

ENDFOR
...

ENDFOR
/*Send data to neighboring processors*/
SEND DATA(. . .);

ENDFOR
ENDDOACROSS
...

ENDDOACROSS

5. EXPERIMENTAL RESULTS
5.1 Measuring the compilation time and per-

formance of sequential tiled code
We have implemented both our method (denoted as RI - Reduced
Inequalities), which is described in detail in [11], and the one pre-
sented in [3] by Ancourt and Irigoin (denoted as AI) in a software
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Figure 6: Determining Communication Sets in the Tile Itera-
tion Space (TIS) and Transformed Tile Iteration Space (TTIS)

tool which automatically generates sequential tiled C++ code us-
ing any tiling transformation. In this section we compare AI and
RI methods both in terms of compilation time and generated code
efficiency. We applied both AI and RI methods to three real ap-
plications: Gauss Successive Over-Relaxation (SOR), Jacobi and
ADI integration. We also applied the inequalities of AI method to
the Omega calculator [18] and generated sequential code for the
same problems. We then measured the compilation time and run
time obtained by Omega (the results are denoted as AI-Omega) and
compared them with the ones obtained by AI (using our tool) and
RI. We performed our experiments on a PIII @ 800MHz processor
with 128MB of RAM. The operating system is Linux with kernel
2.4.18. The generated tiled code was compiled using gcc v.2.95.4
with the -O3 optimization flag. We also experimented with lower
optimization levels, where the execution times were slower but the
relative results for all methods remained the same.

We applied AI and RI methods to tile three real applications: SOR,
Jacobi, and ADI integration. For the first two problems there is a
skewed and an unskewed version [12], and for each version there
are four (communication and scheduling) optimal tiling matrices
(P1 − P4), calculated as described in [14] and [26]. The compi-
lation efficiency of a method is measured by means of the compi-
lation time, which increases as the number of row-operations per-
formed increases. In order to evaluate the runtime overhead due
to tiling, we executed all tiled codes of the previous problems and
measured their run time. We also executed the original untiled se-
rial code for each problem. We define the Tiling Overhead Factor -
TOF, to be the fraction of the runtime of the sequential tiled code to
the runtime of the untiled code: TOF = Runtime of Sequential Tiled Code

Runtime of Untiled Code .
Thus, TOF indicates the overhead imposed by the evaluation of the
new loop bounds, due to tiling. If TOF is too large, it will aggra-
vate the speedup obtained when we parallelize nested FOR-loops
using tiling. Ideally, TOF equals to 1, meaning that tiling imposes
no overhead to the generated code. Table 1 summarizes the row
operations, compilation times and TOFs for each case.

As far as compilation time is concerned, RI method clearly outper-
forms AI method. This is due to the fact that RI supplies FM with
a system of inequalities consisting of 2n inequalities with n vari-
ables, while AI method supplies FM with a system consisting of



Row Operations Compilation Time ms) TOF
AI RI AI-Omega AI RI AI-Omega AI RI

P1 99 22 53.03 0.50 0.42 1.47 1.20 1.05
SOR P2 107 22 50.27 0.53 0.42 1.50 1.21 1.01

P3 118 22 49.01 0.57 0.42 1.75 1.63 1.05
P4 165 40 90.04 0.77 0.5 1.80 1.78 1.30

P1 99 22 42.09 0.53 0.41 1.59 1.29 1.06
SOR P2 107 22 40.60 0.53 0.42 1.60 1.29 1.06

skewed P3 118 22 57.9 0.57 0.42 1.90 1.73 1.12
P4 165 40 91.97 0.77 0.51 1.95 1.86 1.34

P1 645 28 346.99 5.3 0.46 2.08 1.91 1.57
Jacobi P2 645 28 347.96 5.26 0.47 2.09 1.92 1.60

P3 800 28 362.5 8.86 0.47 2.06 1.90 1.56
P4 3207 46 1, 353.55 194.88 0.53 5.58 5.09 2.10

P1 645 28 251.885 4.93 0.48 1.99 1.88 1.44
Jacobi P2 645 28 248.27 4.98 0.47 1.98 1.87 1.46
skewed P3 800 28 229.34 8.19 0.48 2.02 1.89 1.45

P4 691 28 238.82 5.95 0.47 2.01 1.88 1.43

ADI P1 180 28 47.42 0.85 0.46 1.46 1.47 1.07

Table 1: Sequential Code Performance for Real Applications

4n inequalities with 2n variables. Despite the reduction in compi-
lation time imposed by RI, it seems that both AI and AI-Omega per-
form well (compilation times are less than one second). However,
in problems of larger dimensions, both AI and AI-Omega present
several problems. We executed a number of randomly generated
4 − D algorithms and observed that, at first, the compilation time
of AI becomes impractical (several hours or even days). More im-
portantly, AI failed to generate code for almost half of the problems
due to lack of memory. On the other hand, AI-Omega also faced
some problems with memory space (to a smaller extent than AI) but
here again in almost half of the problems the system rose an over-
flow exception. Apparently, after a large number of row operations
in 4−D algorithms, some coefficients exceeded the maximum in-
teger 232. In all cases RI method succeeded in generating code
within some seconds in the worst case.

As far as run time is concerned, RI also exhibits a significant im-
provement in performance in all problems. As shown in Table 1,
RI’s performance is nearly optimal in simple algorithms such as
SOR, Jacobi and ADI, since the TOF in these cases is very close to
one. The improvement in the quality of the generated code caused
by RI, is due to the fact that, although the code to enumerate the
tiles is essentially similar in AI and RI, the code to traverse the in-
ternal points of the tiles is completely different. Our tool makes a
distinction between boundary and internal tiles and generates dif-
ferent code to scan the internal points in each case. In the case
of boundary tiles, RI method results in fewer inequalities for the
bounds of the Tile Space. Consequently, fewer bound calculations
are executed during run time. Finally, note that the enumeration
of some redundant tiles does not impose any significant overhead
since the number of redundant tiles is negligible. The same holds
for the transformation used to access the internal points of the tiles.
In this case, the additional operations due to the transformation are
simple integer multiplications, while operations on extra variables
are integer additions and assignment statements which are all effi-
ciently executed by modern processors and optimized by any back-
end compiler like gcc.

5.2 Measuring the performance of arbitrarily
tiled parallel code

We have implemented our parallelizing techniques in a tool which
automatically generates C++ code with calls to the MPI library and
run our examples on a cluster with 16 identical 500MHz Pentium
III nodes with 128MB of RAM. The nodes run Linux with kernel
2.2.17 and are interconnected with FastEthernet. We used the gcc
v.2.95.2 compiler for the compilation of the sequential programs
and mpiCC (which also uses gcc v.2.95.2) for the compilation of
the generated data-parallel programs. In both cases the -O2 opti-
mization option was applied. Our goal is to investigate the effect
of the tile shape on the overall completion time of an algorithm.
In the following set of experiments, we used the same three real
problems: SOR, the Jacobi algorithm and ADI integration. In each
case, we applied rectangular and non-rectangular tiling transforma-
tions. Although, as described in [12], non-rectangular tiling can be
directly applied to the initial SOR and Jacobi code, in order to com-
pare rectangular v.s. non-rectangular tiling, we apply them to the
skewed version of their iteration space. As far as non-rectangular
tiling is concerned, we apply the theoretically optimal tiling trans-
formation, automatically calculated by our tool, as described in [14,
26].

In order to have a theoretical interpretation of the experimental
results that follow, let us have a look at Figs. 7, 8. Using non-
rectangular tiling, all processors can start their execution simulta-
neously, while using rectangular tiling, they should wait until the
necessary data are transmitted to them. In Figs 7, 8 we have de-
noted the time step during which each tile will be executed. Since
the volume of tiles is equal, the time step in rectangular tiling will
be equal to the one in non-rectangular tiling. Thus, the number of
time steps required for the completion of the algorithm is propor-
tional to the time required.

We executed a large number of experiments for all problems, ap-
plying different sizes of tiling transformations on various iteration
spaces. Due to space limitations, we will present the results of
one iteration space per problem. However, the results for other
iteration spaces were similar. As far as the SOR and Jacobi prob-



j1

j2

1 2 3

2 3 4

3 4 5

Figure 7: Timing for Rectangular Tiling Transformation

j1

j2

1 2 3 4

1 2 3 4

1 2 3 4

Figure 8: Timing for Non-rectangular Tiling Transformation

lems are concerned, we have chosen tiling and mapping parame-
ters so that the communication volume and the number of proces-
sors required are the same in both rectangular and non-rectangular
tiling. Thus, any differences in execution times are due to the dif-
ferent scheduling schemes imposed by the different tile shapes. In
Fig. 9 we present the total execution times for rectangular and non-
rectangular tiling for SOR. In this case the minimum execution time
is 20.6% smaller and the average execution time is 16.1% smaller
in the case of non-rectangular tiling. Applying non-rectangular
tiling in Jacobi (Fig. 10), we achieved 27.4% smaller minimum ex-
ecution time and 36.7% smaller average execution time. Concern-
ing the ADI integration problem, we applied four different tiling
transformations: one rectangular, one optimal non-rectangular and
two more non-rectangular tiling transformations. In all four cases
we have the same tile size, communication and number of proces-
sors. In Fig. 9 we show the execution times. In this case the optimal
non-rectangular tiling transformation achieved 23.4% smaller total
execution time and 72.1% smaller average execution time.
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6. CONCLUSIONS
In this paper, we presented and experimentally evaluated a novel
approach for the problem of automatically generating code for the
parallel execution of tiled nested loops. Our method is applied to
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Figure 10: Jacobi: Total Execution Times for Rectangular and
Non-Rectangular Tiling Transformations

general parallelepiped tiles and non-rectangular space boundaries
as well. In order to efficiently generate parallel tiled code, we
divided the problem into two subproblems: the generation of se-
quential tiled code and the parallelization of sequential tiled code.
In the first case, we extended previous work on non-unimodular
transformations in order to produce tiled code solving small sys-
tems of inequalities and then transform the parallelpiped tiles into
rectangles. In the second case, we exploit the regularity of trans-
formed rectangular tiles in order to easily decide the computation
and communication sets to be assigned to each processor. Experi-
mental results show that our method outperforms previous work in
terms both of compile and run time. In addition, it can fully exploit
the scheduling efficiency of non-rectangular tiles.
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