
Using State-Of-The-Art Sparse Matrix
Optimizations for Accelerating the Performance

of Multiphysics Simulations?

Vasileios Karakasis1, Georgios Goumas1, Konstantinos Nikas1, Nectarios
Koziris1, Juha Ruokolainen2, and Peter R̊aback2

1 National Technical University of Athens, Greece
2 CSC – IT Center for Science Ltd., Finland

1 Introduction

Multiphysics simulations are at the core of modern Computer Aided Engineering
(CAE) allowing the analysis of multiple, simultaneously acting physical phenom-
ena. These simulations often rely on Finite Element Methods (FEM) and the
solution of large linear systems which, in turn, end up in multiple calls of the
costly Sparse Matrix-Vector Multiplication (SpM×V) kernel. The major—and
mostly inherent—performance problem of the this kernel is its very low flop:byte
ratio, meaning that the algorithm must retrieve a significant amount of data
from the memory hierarchy in order to perform a useful operation. In modern
hardware, where the processor speed has far overwhelmed that of the memory
subsystem, this characteristic becomes an overkill [1]. Indeed, our preliminary
experiments with the Elmer multiphysics package [3] showed that 60–90% of
the total execution time of the solver was spent in the SpM×V routine. Despite
being relatively compact, the widely adopted Compressed Sparse Row (CSR)
storage format for sparse matrices cannot compensate for the very low flop:byte
ratio of the SpM×V kernel, since it itself has a lot of redundant information.
We have recently proposed the Compressed Sparse eXtended (CSX) format [2],
which applies aggressive compression to the column indexing structure of CSR.
Instead of storing the column index of every non-zero element of the matrix,
CSX detects dense substructures of non-zero elements and stores only the initial
column index of each substructure (encoded as a delta distance from the previ-
ous one) and a two-byte descriptor of the substructure. The greatest advantage
of CSX over similar attempts in the past [4,5] is that it incorporates a variety of
different dense substructures (incl. horizontal, vertical, diagonal and 2-D blocks)
in a single storage format representation allowing high compression ratios, while
its baseline performance, i.e., when no substructure is detected, is still higher
than CSR’s. The considerable reduction of the sparse matrix memory footprint
achieved by CSX alleviates the memory subsystem significantly, especially for
shared memory architectures, where an average performance improvement of
more than 40% over multithreaded CSR implementations can be observed.

In this paper, we integrate CSX into the Elmer [3] multiphysics simulation
software and evaluate its impact on the total execution time of the solver. Elmer
employs iterative Krylov subspace methods for treating large problems using
the Bi-Conjugate Gradient Stabilized (BiCGStab) method for the solution of

?
The research leading to these results has received funding from the European Community’s Sev-
enth Framework Programme (FP7/2007–2013) under grant agreement n° RI-261557.

the resulting linear systems. To ensure a fair comparison with CSX, we also
implemented and compared a multithreaded version of the CSR used by Elmer.
CSX amortized its preprocessing cost within less than 300 linear system itera-
tions and built an up to 20% performance gain in the overall solver time after
1000 linear system iterations. To our knowledge, this is one of the first attempts
to evaluate the real impact of an innovative sparse-matrix storage format within
a ‘production’ multiphysics software.

The rest of the paper is organized as follows: Section 2 describes the CSX
storage format briefly, Section 3 presents our experimental evaluation process
and the performance results, and Section 4 concludes the paper and designates
future work directions.

2 Optimizing SpM×V for memory bandwidth

The most widely used storage format for non-special (e.g., diagonal) sparse ma-
trices is the Compressed Sparse Row (CSR) format. CSR compresses the row
indexing information needed to locate a single element inside a sparse matrix
by keeping only number-of-rows ‘pointers’ to the start of each row (assuming a
row-wise layout of the non-zero elements) instead of number-of-nonzeros indices.
However, there is still a lot of redundant information lurking behind the column
indices, which CSR keeps intact in favor of simplicity and straightforwardness.
For example, it is very common for sparse matrices, especially those arising from
physical simulations, to have sequences of continuous non-zero elements. In such
cases, it would suffice to store just the column index of the first element and the
size of the sequence. CSX goes even further by replacing the column indices with
the delta distances between them, which can be stored with one or two bytes in
most of the cases, instead of the typical four-byte integer representation of the
full column indices.

Fig. 1. The data structure used by CSX to encode the column indices of a sparse
matrix.

..1
.
1
.

6
.

8
.

8–32
.

8–32
8–32.CTL

.nr .rjmp .id .size .colind .deltas

.Head .Body

. .

Figure 1 shows in detail the data structure (ctl) used by CSX to store the
column indices of the sparse matrix. The main component of the ctl structure
is the unit, which encodes either a dense substructure or a sequence of delta
distances of the same type. The unit is made up of two parts: the head and the
body. The head is a multiple byte sequence that stores basic information about
the encoded unit. The first byte of the head stores a unique 6-bit ID of the
substructure being encoded (e.g., 2×2 block) plus some metadata information for
changing and/or jumping rows, the second byte stores the size of the substructure
(e.g., 4 in our case), while the rest store the the initial column index of the
encoded substructure as a delta distance from the previous one in a variable-
length field. The body can be either empty, if the type ID refers to a dense
substructure, or store the delta distances, if a unit of delta sequences is being
encoded.

Table 1. The test problems used for the experimental evaluation.

Problem name Equations involved SpM×V exec. time (%)

fluxsolver Heat + Flux 57.4
HeatControl Heat 57.5
PoissonDG Poisson + Discontinuous Galerkin 62.0
shell Reissner-Mindlin 83.0
vortex3d Navier-Stokes + Vorticity 92.3

CSX supports all the major dense substructures that can be encountered in a
sparse matrix (horizontal, vertical, diagonal, anti-diagonal and row- or column-
oriented blocks) and can easily be expanded to support more. For each encoded
unit, we use LLVM to generate substructure-specific optimized code in the run-
time. This adds significantly to the flexibility of CSX, which can support indefi-
nitely many substructures, provided that only 64 are encountered simultaneously
in the same matrix. The selection of substructures to be encoded by CSX is made
by a heuristic favoring those encodings that lead to higher compression ratios.

Detecting so many substructures inside a sparse matrix though, can be costly
and this is not strange to CSX. Nonetheless, we have managed to considerably
reduce the preprocessing cost without losing in performance by examining a
mere 1% of the total non-zero elements using samples uniformly distributed all
over the matrix.

3 Experimental Evaluation

The integration of the CSX storage format into the rest of the Elmer code was
straightforward; Elmer can delegate the SpM×V computation to a user-specific
shared library loaded at runtime, so implementing the required library interface
was enough to achieve a seamless integration. The default implementation of
CSR inside Elmer is single-threaded, but we also implemented a multithreaded
version to perform a fair comparison with the multithreaded CSX. Our exper-
imental platform consisted of 192 cores (24 nodes of two-way quad-core Intel
Xeon E5405 [Harpertown] processors interconnected with 1 Gbps Ethernet) run-
ning Linux 2.6.38. We used GCC 4.5 for compiling both Elmer (latest version
from the SVN repository) and the CSX library along with LLVM 2.9 for the
runtime code generation for CSX. Table 1 shows the 5 problems we selected
from the Elmer test suite for the evaluation of our integration. We have appro-
priately increased the size of each problem to be adequately large for our system.
Specifically, we opted for problem sizes leading to matrices with sizes larger than
576 MiB, which is the aggregate cache of the 24 nodes we used. Finally, we have
used a simple Jacobi (diagonal) preconditioner for all the tested problems.

Figure 2 shows the average speedups achieved by simply the SpM×V code
(Fig. 2(a)) and the total solver time (Fig. 2(b)) using the original Elmer CSR,
our multithreaded CSR version and the CSX (incl. the preprocessing cost), re-
spectively. In the course of 1000 linear system iterations, CSX was able to achieve
a significant performance improvement of 37% over the multithreaded CSR im-
plementation, which translates to a noticeable 14.8% average performance im-
provement of the total execution time of the solver. Nevertheless, we believe that
this improvement could be even higher if other parts of the solver exploited par-
allelism within a single node as well, since the SpM×V component would become

Fig. 2. Average speedup of the Elmer code up to 192 cores using the CSX library (1000
linear system iterations).

1 2 4 8 16 24

Nodes (x8 cores)

0.0

10.0

20.0

30.0

40.0

S
pe

ed
up

CSX-mt
CSR-mt
CSR (serial)

(a) Speedup of the total execution time spent inside the
SpM×V library, including the preprocessing cost in
the case of CSX.

1 2 4 8 16 24

Nodes (x8 cores)

0.0

10.0

20.0

30.0

S
pe

ed
up

CSX-mt
CSR-mt
CSR (serial)

(b) Speedup of the total solver time.

then even more prominent, allowing a higher performance benefit from the CSX
optimization. Concerning the preprocessing cost of CSX, we used the typical
case of exploring all the candidate substructures using matrix sampling, and yet
it was able to fully amortize its cost within 224–300 linear system iterations.

4 Conclusions & Future Work

In this paper, we presented and evaluated the integration of the recently pro-
posed Compressed Sparse eXtended (CSX) sparse matrix storage format into the
Elmer multiphysics software package, being one of the first approaches of eval-
uating the impact of an innovative sparse matrix storage format on a ‘real-life’
production multiphysics software. CSX was able to improve the performance of
the SpM×V component nearly 40% compared to the multithreaded CSR and of-
fered a 15% overall performance improvement of the solver in a 24-node, 192-core
SMP cluster. In the near future, we plan to expand our evaluation to NUMA
architectures and even larger systems. Additionally, we are investigating ways
for minimizing the initial preprocessing cost of CSX and also extensions to the
CSX’s interface to support efficiently problem cases where the non-zero values of
the sparse matrix change during the simulation. Finally, we plan to investigate
sparse matrix reordering techniques and how these affect the overall execution
time of the solver using the CSX format.

References

1. Goumas, G., Kourtis, K., Anastopoulos, N., Karakasis, V., Koziris, N.: Performance
evaluation of the sparse matrix-vector multiplication on modern architectures. The
Journal of Supercomputing 50(1), 36–77 (2009)

2. Kourtis, K., Karakasis, V., Goumas, G., Koziris, N.: CSX: An Extended Compres-
sion Format for SpMV on Shared Memory Systems. In: Proceedings of the 16th ACM
SIGPLAN Annual Symposium on Principles and Practice of Parallel Programming
(PPoPP’11). pp. 247–256. ACM, San Antonio, Texas, USA (2011)

3. Lyly, M., Ruokolainen, J., Järvinen, E.: ELMER – a finite element solver for mul-
tiphysics. In: CSC Report on Scientific Computing (1999–2000)

4. Pinar, A., Heath, M.T.: Improving performance of sparse matrix-vector multiplica-
tion. In: Proceedings of the 1999 ACM/IEEE conference on Supercomputing. ACM,
Portland, OR, USA (1999)

5. Vuduc, R., Demmel, J.W., Yelick, K.A.: OSKI: A library of automatically tuned
sparse matrix kernels. Journal of Physics: Conference Series 16(521) (2005)

	Using State-Of-The-Art Sparse Matrix Optimizations for Accelerating the Performance of Multiphysics Simulations

