
Perfomance Models for Blocked Sparse Matrix-Vector Multiplication kernels

Vasileios Karakasis, Georgios Goumas, Nectarios Koziris
National Technical University

Athens, Greece
HiPEAC members

Email: {bkk,goumas,nkoziris}@cslab.ece.ntua.gr

Abstract—Sparse Matrix-Vector multiplication (SpMV) is a
very challenging computational kernel, since its performance
depends greatly on both the input matrix and the underlying
architecture. The main problem of SpMV is its high demands
on memory bandwidth, which cannot yet be abudantly of-
fered from modern commodity architectures. One of the most
promising optimization techniques for SpMV is blocking, which
can reduce the indexing structures for storing a sparse matrix,
and therefore alleviate the pressure to the memory subsystem.
However, blocking methods can severely degrade performance
if not used properly. In this paper, we study and evaluate a
number of representative blocking storage formats and present
a performance model that can accurately select the most
suitable blocking storage format and the corresponding block
shape and size for a specific sparse matrix. Our model considers
both the memory and computational part of the kernel, which
can be non-negligible when applying blocking, and also assumes
an overlapping of memory accesses and computations that
modern commodity architectures can offer through hardware
prefetching mechanisms.

Keywords-sparse matrix-vector multiplication; performance
models; blocking

I. INTRODUCTION

Sparse Matrix-Vector Multiplication (SpMV) is one of the
most important and widely used scientific kernels arising in
a variety of scientific problems. The SpMV kernel poses a
variety of performance issues both in single and multicore
configurations [5], [14], [19], which are mainly due to
the memory-intensive nature of the SpMV algorithm. To
this end, a number of optimization techniques have been
proposed, such as register and cache blocking [7], [8],
compression [10], [18], and column or row reordering [12].
The main purpose of all these techniques is to either reduce
the total working set of the algorithm, i.e., the total amount
of data that needs to be fetched from main memory, or
create more regular memory access patterns (reordering
techniques). Blocking methods fall mainly into the first cate-
gory, since their main advantage is that they can considerably
reduce the total working set of the algorithm, thus applying
less pressure to the memory subsystem. By alleviating the
memory pressure, blocking techniques leave more space for
optimizations targeting the computational part of the kernel
as well, such as loop unrolling and vectorization [9], which
can further improve performance.

In general, blocking storage formats for sparse matrices
can be divided into three categories: (a) storage formats
that apply zero-padding aggresively in order to construct
full blocks, (b) storage formats that decompose the original
matrix into k submatrices, where the k− 1 submatrices use
blocking without padding and the k-th matrix is stored in
standard Compressed Sparse Row (CSR) format [2], and
(c) storage formats that use variable size blocks without
padding, but at the expense of additional indexing structures.
Blocked Compressed Sparse Row (BCSR) [8] and Un-
aligned BCSR [17] formats are typical examples of the first
category. Both formats try to exploit small two-dimensional
dense subblocks inside the sparse matrix with their main
difference being that BCSR imposes a strict alignment to
its blocks at specific row- and column-boundaries. Agarwal
et al. [1] decompose the input matrix by extracting regular
common patterns, such as dense subblocks and partial diago-
nals. Similarly, Pinar and Heath [12] decompose the original
matrix into two submatrices: a matrix with horizontal one-
dimensional dense subblocks without padding and a matrix
in CSR format containing the remainder elements. Pinar
and Heath [12] present also an one-dimensional variable-
sized blocking storage format, while in [13] the Variable
Blocking Row (VBR) format is presented, which constructs
two-dimensional variable blocks at the cost of two additional
indexing structures.

In this paper, we study and evaluate the performance
of five different storage formats, which are representative
of the blocking strategies for sparse matrices: (a) BCSR,
(b) BCSR-DEC, which is the decomposed version of BCSR,
(c) BCSD (Block Compressed Sparse Diagonal), which is
a variation of BCSR exploiting dense diagonal subblocks,
(d) BCSD-DEC, which is the decomposed version of BCSD,
and (e) 1D-VBL (One-dimensional Variable Block Length),
which is the storage format proposed in [12]. Our evaluation
shows that none of them can be considered as a panacea,
since in our matrix suite consisting of 30 matrices from
different problem categories every storage format managed
to achieve the best overall performance for at least two
matrices. Additionally, the standard CSR format should
always be considered as a competing storage format, since
in many problems without an underlying 2D/3D geometry,
blocking methods could not provide any speedup.

With such a variety of efficient blocking storage formats
and considering the different combination of block shapes
for each format, that can also have a significant impact in
performance [9], it is obvious that a performance model is
needed, in order to select the most appropriate combination
of storage format and block shape. Such a performance
model should not only be able to predict the execution
time of a specific blocking method, but also to guide the
selection of the best combination of blocking storage and
block shape. Towards this direction, Gropp et al. [6] used
a simple performance model to predict the performance of
CSR, in which case the execution time was computed as the
ratio of the algorithm’s working set to the machine’s memory
bandwidth. However, when moving to blocking storage
formats, the memory wall problem is not so intense as in
the CSR case and, as pointed out in [9], the computational
part of the kernel is non-negligible and the selection of a
block that favors computational optimizations can lead to
even higher performance. Therefore, a model that would also
account for the computational part of the kernel should be
considered. Vuduc et al. [16] and Buttari et al. [3] propose a
simple heuristic that accounts for the computational part of
BCSR by estimating the padding of blocks and by profiling
a dense matrix, but it is constrained to the BCSR format
only. In this work, we propose two general performance
models for the prediction of the execution time of blocked
sparse kernels that take into account the computational part
of the kernel: a model that considers separately the memory
and computational part of the algorithm (MEMCOMP) and
a model that assumes an overlapping between the two
parts (OVERLAP). We compare both models to the simple
streaming model (MEM) presented in [6]. Although MEM
can generally provide a good selection of method and block
shape, it can fall short on its selection, when the prob-
lem becomes more computational intensive. The contrary
is true with MEMCOMP model. However, the OVERLAP
model adapts better to each case and can yield a fairly
good selection of method and block shape, which leads to
performance that lies on average 2% off the best SpMV
performance achieved for the microarchitecture used in this
paper.

The rest of the paper is organized as follows: Section II
presents and discusses the different blocking storage formats
for sparse matrices. Section III discusses the performance is-
sues involved when applying blocking to SpMV, Section IV
presents the performance models proposed in this paper,
Section V presents an experimental evaluation of the dif-
ferent blocking storage formats considered and evaluates the
proposed performance models. Finally, Section VI concludes
the paper.

II. AN OVERVIEW OF BLOCKING STORAGE FORMATS

In this section, we consider blocking storage formats for
sparse matrices that can be applied to an arbitrary sparse

matrix, as opposed to storage formats which assume a
special nonzero elements pattern, e.g., tri-band, diagonal
sparse matrices, etc. Before proceeding with the description
of any blocking format, we describe briefly the standard
sparse matrix storage format, namely the Compressed Sparse
Row (CSR) format [2]. CSR uses three arrays to store a
n ×m sparse matrix with nnz nonzero elements: an array
val of size nnz to store the nonzero elements of the matrix,
an array col ind of size nnz to store the column indices of
every nonzero element, and an array row ptr of size n + 1
to store pointers to the first element of each row in the val
array.

Blocking storage formats for sparse matrices can be
divided into two large categories: (a) formats with fixed-
size blocks that employ aggressively padding with zeros
to construct full blocks and (b) formats that do not pad at
all. The second category can be further divided depending
on the strategy used to avoid padding. There have been
proposed two strategies to avoid padding in the literature:
(a) decompose the original matrix into two or more matri-
ces, where each matrix contains dense subblocks of some
common pattern (e.g., rectangular, diagonal blocks, etc.),
while the last matrix contains the remainder elements in
a standard sparse storage format [1], and (b) use variable-
sized blocks [12], [13]. In the following, we will present
each blocking method in more detail.

A. Blocking with padding

Blocked Compressed Sparse Row: The most prominent
blocking storage format for sparse matrices that uses padding
is the Blocked Compressed Sparse Row (BCSR) format [8].
BCSR is the blocked version of CSR, which instead of
storing and indexing single nonzero elements, it stores
and indexes two-dimensional fixed-size blocks with at least
one nonzero element. BCSR will use padding in order to
construct full blocks. Specifically, BCSR uses three arrays to
store a sparse matrix: (a) bval , which stores linearly in row-
wise or column-wise order the values of all blocks present
in the matrix, (b) bcol ind , which stores the block-column
indices, and (c) brow ptr , which stores pointers to the first
element of each block row in bval . Another property of
BCSR is that it imposes a strict alignment to its blocks:
each r× c block should be aligned at r row- and c column-
boundaries, i.e., a r × c block should always start at the
position (i, j), such that mod(i, r) = 0 and mod(j, c) = 0.
This restriction leads generally to more padding (see Fig. 1),
but it has two main advantages: it facilitates the construction
of the BCSR format and it can have a positive impact on
performance, when using vectorization [9]. A variation of
BCSR is the Unaligned BCSR (UBCSR) [17], which relaxes
the above restriction, in order to avoid padding.

Blocked Compressed Sparse Diagonal: The Blocked
Compressed Sparse Diagonal (BCSD) format is analogous
to BCSR, but exploits small diagonal subblocks inside

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 9 8 1
1 5 5 5 1

6 9
2 4

6 3
3 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
2 9

1

⎡

5 55 5
8 1
5 1

⎤

6 9
2 4

⎣6⎣ 3
3 7

(a) BCSR

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 9 8 1
1 5 5 5 1

6 9
2 4

6 3
3 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
2

1

⎡

1
9

5
9

5 55 55
8

1
8

1

⎤

22
6 99

6⎣6
3 7

333

44

(b) BCSD

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 9 8 1
1 5 5 5 1

6 9
2 4

6 3
3 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2 9
⎡

1 5 5

36⎣

8 1
⎤

5 1

⎤

6 9
2 4

3 77

(c) 1D-VBL

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 9 8 1
1 5 5 5 1

6 9
2 4

6 3
3 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

5 55 5
8 18 1

⎤

5 15 1

⎤⎡
2

⎡
2 99

11

⎣6⎣6 33
7733

6 9
2 4
6 9
2 4

(d) VBR

Figure 1: How the different blocking storage formats split the input matrix into blocks.

the matrix. Like BCSR, it also uses three arrays—bval ,
bcol ind , and brow ptr—to store the input matrix, but in
this case bval stores the elements of each diagonal subblock,
while bcol ind continues to store the column index of
each subblock. BCSD also imposes an alignment restriction
as to where each diagonal block can start. Specifically,
each diagonal block of size b should start at the position
(i, j), such that mod(i, b) = 0. This restriction effectively
separates the matrix into block rows or segments of size b
(see Fig. 1). The brow ptr array then stores pointers to the
first element of each segment in the the bval array. BCSD
also uses padding to construct full blocks.

A version of this format has been initially proposed in [1]
as part of a decomposed method, which extracted common
dense subblocks from the input matrix. A similar format,
called RSDIAG, is also presented in [15], but it maintains an
additional structure that stores the total number of diagonals
in each segment. This format was also part of a decomposed
method.

B. Blocking without padding

Decomposed matrices: A common practice to avoid
padding is to decompose the original input sparse matrix
into k smaller matrices, where the first k − 1 matrices
consist of elements extracted from the input matrix that
follow a common pattern, e.g., rectangular or diagonal dense
subblocks, while the k-th matrix contains the remainder
elements of the input matrix, stored in a standard sparse
matrix storage format. In this paper, we present and evaluate
the decomposed versions of BCSR (BCSR-DEC) and BCSD
(BCSD-DEC). For these formats k = 2, i.e., the input
matrix is split into only two submatrices, the first containing
full blocks without padding and the second the remainder
elements stored in CSR format.

Variable size blocks: An alternative solution to avoid
padding when using blocking is to use variable size blocks.
Two methods have been proposed in the literature that use
variable-size blocks: one-dimensional Variable Block Length
(1D-VBL) [12], which exploits one-dimensional horizontal
blocks, and Variable Block Row (VBR) [13], which exploits
two-dimensional blocks. 1D-VBL uses four arrays to store
a sparse matrix: val , row ptr , bcol ind , and blk size . The
val and row ptr arrays serve exactly the same purpose as

in CSR, while bcol ind stores the starting column of each
block and blk size stores the size of each block. VBR is
more complex and it actually partitions the input matrix
horizontally and vertically, such that each resulting block
contains only nonzero elements. In order to achieve this, it
uses two additional arrays compared to CSR to store the
start of each block-row and block-column.

Figure 1 summarizes how each block format forms blocks
from neighboring elements.

III. PERFORMANCE ISSUES OF BLOCKING

The SpMV kernel in modern commodity microarchitec-
tures is in most cases bound from memory [5] bandwidth.
Although there exist other potential performance problems
in this kernel, such as indirect references, irregular accesses,
and loop overheads, the bottleneck in the memory subsystem
is categorized as the most important SpMV performance
problem in both single- and multithreaded configurations [5],
[9], [19]. The great benefit of blocking methods is that
they can substantially reduce the working set of the SpMV
algorithm, thus reducing the demands on memory bandwidth
and alleviating the pressure to the memory subsystem. The
reduction of the working set is mainly due to the fact that
blocking methods maintain a single index for each block
column instead of an index for each element. Therefore,
the col ind structure of CSR, which comprises almost half
of the working set of the algorithm, can be significantly
reduced. A consequence of reducing the memory bandwidth
demands of the SpMV kernel is that the computational part
is then more exposed, since it comprises a larger portion
of the overall execution time. Therefore, optimizations tar-
geting the computational part can have significant impact
on performance [9]. However, each blocking method has its
own advantages and pitfalls, which are summarized in the
following.

Fixed size blocking with padding: The main advantage
of these methods is that they allow for efficient imple-
mentations of block-specific kernels since the size—and in
most cases the alignment—of blocks is known a priori.
However, if the nonzero elements pattern of the input matrix
is rather irregular, these methods lead to excessive padding,
overwhelming any benefit from the reduction of the size
of col ind structure. Additionally, the selection of the most

appropriate block is not straightforward, especially if vector-
ization is used, since instruction dependencies and hardware
limitations of the vector units of modern commodity archi-
tectures can significantly affect the overall performance [9].

Decomposed methods: Although decomposed methods
avoid padding, they suffer from three problems: (a) there
is no temporal or spatial locality (except in the input vector)
between the different k SpMV operations, (b) additional
operations are needed to accumulate the partial results to the
final output vector, and (c) the remainder CSR matrix will
have very short rows, which can further degrade the overall
performance due to loop overheads and cache misses on the
input vector [5].

Variable size blocking: The variable size blocking has
also the advantage of not employing padding to construct
blocks, but at the expense of additional data structures.
Therefore, any gain in the final working set of the al-
gorithm by eliminating padding and reducing the col ind
structure can be overwhelmed by the size of the additional
data structures. Finally, the extra level of indirection that
variable size blocking methods introduce can further degrade
performance.

IV. PERFORMANCE MODELS

From the above discussion of blocking storage formats
for sparse matrices, it is obvious that the correct selection of
both a blocking method and an appropriate block (for fixed
sized blocking methods) can be a tedious task. Therefore, a
performance model is needed that could guide the selection
of the appropriate blocking method and exact block and,
possibly, the use of a specially tuned multiplication kernel,
e.g., with or without vectorization. In this paper, we examine
two new performance models that account also for the
computational part of the kernel (MEMCOMP and OVERLAP)
and compare them to the classic memory bandwidth-based
model of Gropp et al. [6] (MEM). The performance models
that we propose here are suitable for fixed size blocks with
or without padding (decomposed blocking methods). We
do not consider variable size blocking methods, since our
experiments showed that they have very little potential to
provide competitive performance, due to the space and com-
putational overhead that their additional data structures incur.
In addition, we have chosen not to directly compare with the
heuristic presented in [15], since this targets specifically the
BCSR storage format, and thus, it is not as generic as the
models presented herein.

According to [5], the total execution time of SpMV is
determined primarily by the memory transfer times, and sec-
ondarily by the memory latency that should be paid for cache
misses due to irregular accesses on the input vector, the loop
overheads when the matrix comprises of very short rows,
and the useful arithmetic operations that perform the actual
multiplication. Each model makes different assumptions for
the significance of these times.

The MEM model: This model regards the SpMV as a
pure streaming kernel and ignores the memory latencies
incurred by cache misses and the computational part of the
kernel. Therefore, if ws is the working set of the SpMV
algorithm for a specific storage format and BW is the
effective memory bandwidth of the system, the predicted
execution time according to the MEM model is

tMEM =
ws

BW
. (1)

This model is fairly general and can be applied to any
blocking method for sparse matrices.

The MEMCOMP model: The MEMCOMP model builds
upon the MEM model by considering also the computational
part of the kernel. It can be applied on fixed size block-
ing methods, either decomposed or not. According to this
model, the predicted execution time for a storage format
decomposed into k matrices is

tMEMCOMP =
k∑

i=1

(wsi

BW
+ nbi · tbi

)
, (2)

where nbi is the total number of blocks for the i-th matrix
in the decomposition and tbi

is the estimated execution time
for a single block of the i-th matrix. In general, each matrix
of the decomposition can be stored with a different block,
even with a different fixed size blocking storage format. If
k = 1, this model computes the execution time of a fixed size
blocking method with padding. The time tbi

differs between
block methods, specific blocks, and implementations (e.g.,
SIMD). These block times can be obtained by profiling the
execution of a very small dense matrix, which is stored using
every blocking method and block under consideration and
fits in the L1 cache of the target machine. The MEMCOMP
model also treats CSR as a degenerate blocking method with
1×1 blocks and nb = nnz .

The OVERLAP model: The idea behind the OVERLAP
model is that modern commodity architectures employ smart
hardware prefetching mechanisms, which apart from hiding
the memory latency by reducing the cache misses, they
can effectively overlap computations and memory transfers,
since they fetch new data from main memory to cache, while
the processor is processing the current data. As discussed
in [5], the hardware prefetching mechanisms of modern
commodity architectures can accurately predict the memory
access pattern of SpMV and can provide large speedups.
The OVERLAP model is similar to the MEMCOMP model,
but the part of equation (2) representing the computations is
adapted with a multiplication factor indicating the percent-
age of computations that are not overlapped with memory
transfers. We name this factor non-overlapping factor (nof).
Therefore, the execution time of a blocked kernel according
to the OVERLAP model is

tOVERLAP =
k∑

i=1

(wsi

BW
+ nof bi

· nbi · tbi

)
. (3)

Similar to tbi
, the nof bi

factor differs between block meth-
ods and blocks, and it is obtained through the following
formula by profiling a large dense matrix that exceeds the
highest level of cache of the target machine:

nof bi
=

trealbi
− tMEM

nbi · tbi

, (4)

where trealbi
is the real execution time for the specific block

method and block applied to the profiled dense matrix, and
tbi

is as computed for the MEMCOMP model. The nominator
of this fraction represents the time of computations that were
not actually overlapped with memory transfers, while the
denominator represents the estimated time for computations.

Finally, it should be noted that all models presented ignore
memory latencies, which means that they actually ignore
the cache misses due to the irregular accesses on the input
vector. As pointed out in [5], these irregular accesses do not
pose a significant performance impedence in most cases,
since they can be tackled from hardware prefetching.

V. EXPERIMENTAL EVALUATION

Matrix suite: The matrix suite used for our experiments
is a set of sparse matrices obtained from Tim Davis’ sparse
matrix collection [4]. We chose to include matrices from
different application domains, which could reveal the capa-
bilities and possible shortcomings of the different blocking
storage formats under evaluation. The matrix suite consists
of 30 matrices (Tab. I). Matrices #1 (dense) and #2 (random)
are special purpose matrices, while the remaining 28 are
divided into two large categories: matrices #3–#16 come
from problems without an underlying 2D/3D geometry,
while matrices #17–#30 have a 2D/3D geometry. In general,
sparse matrices with an underlying geometry exhibit more
regular structure, so we expect blocking methods to perform
better on these matrices. Finally, all selected matrices have
large enough working sets (>25 MB in CSR format), so that
none of them fits in the processor’s cache.

System platform and experimental process: For our exper-
imental evaluation we used a dual Intel Core 2 Duo Xeon
processor clocked at 2.66 GHz. Each core has separate L1
I-cache and D-cache, 32 KiB each. The two cores share a
4 MiB, 16-way set associative L2 cache. This microarchitec-
ture supports hardware prefetching, which was enabled. The
memory subsystem can deliver up to 3.36 GiB/s according to
the STREAM benchmark [11]. The system ran GNU/Linux,
kernel version 2.6, for the x84 64 ISA. All programs were
compiled using gcc, version 4.2, with the highest level of
optimization (-O3). For the evaluation of each blocking
storage format, we ran 100 consecutive SpMV operations
using randomly generated input vectors.

A. Evaluation of blocking storage formats

We have implemented five different blocking storage
formats: two with fixed size blocks using padding (BCSR

and BCSD), two decomposed with fixed size blocks (BCSR-
DEC and BCSD-DEC), and one with variable size blocks
(1D-VBL). We also implemented the standard CSR format,
in order to have a common baseline. We used four-byte
integers for the indexing structures of every format, and one-
byte entries for the additional data structure of 1D-VBL,
which contains the block sizes. This restricts the number of
maximum elements per block to 255, but in the rare case
a greater block is encountered, it is split into 255-element
chunks. For the fixed size blocking methods, we used blocks
with up to eight elements, and we have implemented a block-
specific multiplication routine for each particular block. We
did not use larger blocks, since preliminary experiments
showed that such blocks cannot offer any speedup over stan-
dard CSR. We also implemented vectorized versions of the
kernels for the fixed size blocking methods. Table II presents
how many matrices each method “won”, i.e., in how many
matrices managed to provide the overall best performance,
for every different configuration. Table III shows in detail
the mininum, average, and maximum speedups over standard
CSR per matrix, that each method achieved for the double
precision configuration without vectorization. The results are
similar for the remaining configurations, too.

We can make a number of observations from the results
presented. First, the variable size 1D-VBL format cannot be
considered very competitive on the microarchitecture used,
since it managed to achieve the best performance (with a
marginal, less than 3%, difference from the second, BCSR-
DEC method) on only one matrix in a single configuration.
In addition, it could not outperform CSR in most cases. This
is mainly due to the overhead incurred by the additional
data structure to store the block sizes. However, 1D-VBL
achieved the best speedup for the dense matrix, but this is
expected, since it can construct the largest blocks. On the
other hand, CSR is still a competitive format, especially for
matrices without an underlying 2D/3D geometry, where the
blocking methods, even in their decomposed form, cannot
perform adequately. Second, the performance of blocking
methods with padding can significantly vary, especially in
the case of BCSR. For example, the variation between
minimum and maximum performance can be greater than
50% on those matrices where an average 10% speedup
can be achieved over CSR. On the other hand, although
decomposed methods are not so competitive as blocking
methods with padding, especially for single precision, they
exhibit a more stable behavior across different blocks, since
the minimum and maximum performance differ only about
10%–15%.

We have also implemented multithreaded versions of the
blocked methods under consideration. We have chosen not
to implement a multithreaded version of 1D-VBL, since it
proved to be not competitive in the single-threaded configu-
ration. In order to assign work to threads, we have split the
input matrix row-wise in as many portions as threads. We

Matrix Domain # rows # nonzeros ws (MiB) Matrix Domain # rows # nonzeros ws (MiB)
01.dense special 2,000 4,000,000 30.54 16.bone010 Other 986,703 36,326,514 288.44
02.random special 100,000 14,977,726 115.42 17.kkt power Power 2,063,494 8,130,343 121.05
03.cfd2 CFD 123,440 1,605,669 24.95 18.largebasis Opt. 440,020 5,560,100 45.01
04.parabolic fem CFD 525,825 2,100,225 34.05 19.TSOPF RS Opt. 38,120 16,171,169 123.81
05.Ga41As41H72 Chemistry 268,096 9,378,286 74.62 20.af shell10 Struct. 1,508,065 27,090,195 223.94
06.ASIC 680k Circuit 682,862 3,871,773 37.35 21.audikw 1 Struct. 943,695 39,297,771 310.62
07.G3 circuit Circuit 1,585,478 4,623,152 76.59 22.F1 Struct. 343,791 13,590,452 107.62
08.Hamrle3 Circuit 1,447,360 5,514,242 58.63 23.fdiff Struct. 4,000,000 27,840,000 258.18
09.rajat31 Circuit 4,690,002 20,316,253 208.67 24.gearbox Struct. 153,746 4,617,075 71.04
10.cage15 Graph 5,154,859 99,199,551 815.82 25.inline 1 Struct. 503,712 18,660,027 148.13
11.wb-edu Graph 9,845,725 57,156,537 548.75 26.ldoor Struct. 952,203 23,737,339 192.00
12.wikipedia Graph 3,148,440 39,383,235 336.50 27.pwtk Struct. 217,918 5,926,171 47.71
13.degme Lin. Prog. 659,415 8,127,528 65.94 28.thermal2 Other 1,228,045 4,904,179 51.47
14.rail4284 Lin. Prog. 1,096,894 1,000,000 90.31 29.nd24k Other 72,000 14,393,817 110.64
15.spal 004 Lin. Prog. 321,696 46,168,124 353.54 30.stomach Other 213,360 3,021,648 25.50

Table I: Matrix suite. The working set (ws) column represents the working set of the matrix stored in CSR format.

Method/Configuration dp dp-simd sp sp-simd
CSR 9 9 7 7
BCSR 8 9 13 14
BCSR-DEC 6 6 3 2
BCSD 2 2 2 2
BCSD-DEC 2 2 3 3
1D-VBL 1 – 0 –

Table II: Total number of matrices that each format provided
the best overall performance for the different configurations
tried (‘dp’ stands for double precision and ‘sp’ for single-
precision). The special category matrices (dense, random)
are ignored.

have also applied a static load balancing scheme, according
to which we split the input matrix, such that each thread
is assigned the same number of nonzeros. Specifically, for
the case of methods with padding, we also accounted for
the extra zero elements used for the padding. Figure 2
presents number of “wins” for each method for one, two,
and four cores. The picture here is similar to the single-
threaded configuration: BCSR continues to gain the majority
of matrices with CSR and BCSD following.

From the above evaluation, it is obvious that there is
no method that fits all the matrices. All blocking methods
presented, except 1D-VBL, managed to achieve the best
performance in at least 10% of the matrices of our matrix
suite.

B. Evaluation of the performance models

A performance model for the selection of a blocking
method can be evaluated with two metrics: (a) the prediction
accuracy, i.e., how accurately it can predict the actual
execution time of a blocked kernel, and (b) the selection
accuracy, i.e., how close to the optimal combination of
block method and block shape is its selection. Although
the first metric implies the second, i.e., if a model can
accurately predict the actual execution time of the kernel,
then its selection would also be accurate, the inverse is not

BCSD−DEC
BCSD
BCSR−DEC
BCSR
CSR

 0

 5

 10

 15

 20

 25

D
P

−
1

S
P

−
1

D
P

−
2

S
P

−
2

D
P

−
4

S
P

−
4

#
m

a
tr

ic
e
s

Figure 2: Distribution of wins (overall best performance)
across blocking methods for one, two, and four cores, single
and double precision.

necessarily true. What is important for a performance model
to accurately select the proper blocking method and block
is to properly rank the different combinations of blocking
methods and blocks with the help of its own prediction,
even if the predicted execution time is not very accurate.
We evaluate the performance models presented in Section IV
with both metrics.

Figure 3 depicts the average predicted execution time of
each model normalized over the actual execution time of
the kernel for single and double precision. Each point in
these graphs represents the average predicted execution time
of a model over all possible combinations of blocks and
block methods for the matrix whose id lies on the x-axis
(we have omitted the first two special matrices). The legend
on the left of each subfigure describes the average distance
of the predicted execution time from the actual execution
time for all matrices. This can be viewed as a metric of
the prediction accuracy of each model. These figures reveal
several important characteristics of each performance model.
First, we can argue that the MEM model provides a lower
bound of execution time (performance upper bound), while
the MEMCOMP, in general, can provide an upper bound of
execution time (performance lower bound). The OVERLAP
model approximates better the real execution time of a

Matrix BCSR BCSR-DEC BCSD BCSD-DEC 1D-VBL
min avg max min avg max min avg max min avg max

01.dense 1.16 1.28 1.29 1.16 1.28 1.29 1.17 1.27 1.27 1.16 1.27 1.27 1.32
02.random 0.21 0.21 0.71 0.98 0.99 1.00 0.69 0.69 0.80 0.99 0.99 1.00 0.80
03.cfd2 0.41 0.42 0.90 0.91 0.95 1.01 0.92 0.92 0.96 1.00 1.03 1.03 0.66
04.parabolic fem 0.30 0.36 0.80 0.84 0.91 0.91 0.69 0.70 0.73 0.83 0.88 0.88 0.82
05.Ga41As41H72 0.35 0.35 0.85 0.97 0.98 1.05 0.77 0.77 0.93 1.01 1.02 1.03 0.86
06.ASIC 680k 0.34 0.35 0.84 0.88 0.94 0.95 0.66 0.66 0.77 0.87 0.91 0.92 0.81
07.G3 circuit 0.34 0.35 0.85 0.76 0.81 0.81 0.83 0.85 0.86 0.84 0.88 0.88 0.81
08.Hamrle3 0.45 0.45 0.96 0.80 0.86 0.87 0.62 0.67 0.86 0.82 0.82 0.86 0.74
09.rajat31 0.30 0.31 0.78 0.79 0.86 0.86 0.80 0.81 0.84 0.87 0.87 0.90 0.74
10.cage15 0.24 0.24 0.71 0.94 0.96 0.96 0.79 0.81 0.90 0.97 1.01 1.02 0.75
11.wb-edu 0.40 0.54 0.95 0.82 0.93 0.93 0.73 0.73 0.74 0.83 0.87 0.87 0.74
12.wikipedia 0.34 0.37 0.89 0.98 0.98 0.99 0.83 0.89 0.89 0.98 0.98 0.98 0.66
13.degme 0.28 0.28 0.71 0.88 1.00 1.00 0.65 0.75 0.79 0.94 1.00 1.00 0.73
14.rail4284 0.35 0.35 0.98 0.97 1.00 1.04 0.73 0.75 0.80 0.97 1.00 1.00 0.77
15.spal 004 0.36 0.36 1.13 0.99 1.00 1.12 0.76 0.76 0.77 0.99 1.00 1.00 1.03
16.bone010 0.69 0.70 1.21 0.98 0.99 1.17 1.03 1.04 1.07 1.06 1.12 1.13 1.07
17.kkt power 0.26 0.28 0.79 0.83 0.86 0.86 0.75 0.75 0.78 0.84 0.87 0.87 0.83
18.largebasis 0.51 0.52 1.16 0.92 0.96 1.12 0.82 0.84 0.98 0.97 0.97 1.01 0.92
19.TSOPF RS 1.14 1.21 1.27 1.15 1.27 1.31 1.15 1.23 1.23 1.15 1.24 1.24 1.27
20.af shell10 0.75 0.77 1.18 0.97 0.99 1.14 0.93 0.93 1.02 1.02 1.02 1.07 1.02
21.audikw 1 0.56 0.60 1.21 0.96 0.99 1.17 0.70 0.70 0.92 0.97 0.97 1.02 0.84
22.F1 0.55 0.61 1.21 0.98 1.01 1.18 0.69 0.69 0.88 0.95 1.00 1.01 0.86
23.fdiff 0.27 0.28 0.77 0.85 0.89 0.91 1.00 1.09 1.10 1.00 1.09 1.09 0.82
24.gearbox 0.63 0.64 1.23 0.99 1.00 1.18 0.83 0.83 1.00 1.02 1.02 1.08 0.92
25.inline 1 0.54 0.60 1.21 0.96 0.99 1.18 0.71 0.71 0.92 0.98 0.98 1.02 0.82
26.ldoor 0.70 0.78 1.17 0.96 0.99 1.17 0.77 0.77 0.96 0.98 0.98 1.00 1.05
27.pwtk 0.82 0.84 1.08 1.02 1.03 1.11 1.01 1.05 1.05 1.07 1.09 1.10 1.14
28.thermal2 0.36 0.42 0.89 0.75 0.88 0.88 0.69 0.69 0.74 0.80 0.85 0.85 0.69
29.nd24k 0.92 0.94 1.11 1.10 1.11 1.17 1.00 1.00 1.09 1.11 1.12 1.14 0.96
30.stomach 0.29 0.30 0.80 0.92 0.96 0.98 1.02 1.06 1.09 1.03 1.05 1.08 0.58
Average 0.49 0.52 0.99 0.93 0.98 1.04 0.82 0.85 0.92 0.97 1.00 1.01 0.87

Table III: Comparison of storage formats: speedups over CSR per matrix for all the blocks tested (double precision).

block kernel, and its prediction lies within 10% off the
actual execution time. The MEM model can also provide
an accurate prediction (≈15%) when the problem is very
memory-bound (double precision). On the other hand, the
MEMCOMP model cannot provide a precise prediction of the
execution time for the majority of matrices, since it assumes
no overlapping between memory transfers and computations.
The prediction accuracy of the MEM and OVERLAP models
verifies our initial assumption that memory latencies do not
represent a significant portion of the total SpMV execution
time. However, there exist matrices (#12, #14, #15, and #28)
where all models, and especially the MEM and OVERLAP,
fall short with their prediction. These are matrices that suffer
from irregular accesses on the input vector, and therefore
they are rather latency-bound than bandwidth-bound. To
verify this, we ran a special custom benchmark on these
matrices [5]. This benchmark zeros out the col ind structure
of CSR, so that no misses are incurred due to irregular
accesses. When we applied the benchmark, the performance
of these matrices doubled, and even quadrapled in the case
of matrix #12, whose structure is very irregular, meaning that
these matrices suffer indeed from cache misses on the input
vector. Finally, we should note that the MEMCOMP model
provided much better accuracy in these cases, especially

for matrix #28, because its assumption of non-overlapping
memory transfers and computations holds.

Figure 4 presents the real execution time of the block
method and block that each model selected for the matrix
on x-axis normalized over the overall best performance for
this matrix. In these figures, the MEMCOMP and OVERLAP
models selected also the implementation of the kernel, i.e.,
whether to use vectorization or not. For the MEM model,
where the computational part of kernel is ignored, we se-
lected the non-simd version by default. Table IV presents the
total number of correct predictions (block method and block)
for each model, as well as their average distance from the
optimal selection. The OVERLAP model can provide a fairly
accurate selection, whose performance lies within 2% off the
optimal performance, whereas the selection of the other two
models lies between 4% and 9%. The OVERLAP model,
as depicted on Fig. 4 managed to provide nearly optimal
selections for all matrices. We should also note here the very
good selection accuracy of the MEMCOMP model, especially
for double precision, despite its inability to accurately pre-
dict the actual execution time. Finally, for matrices #16–#30,
where the different block methods where beneficial, both the
MEMCOMP and OVERLAP models provided nearly optimal
block selections, while the MEM model, which considers

 0.5

 1

 1.5

 2

 5 10 15 20 25 30

N
o
rm

al
iz

ed
 p

re
d
ic

te
d
 e

x
ec

u
ti

o
n
 t

im
e

(a
v
g
)

Matrix Id

abs(t_mem − t_real) ~ 18.8%
abs(t_memcomp − t_real) ~ 35.1%
abs(t_overlap − t_real) ~ 10.4%

t_mem
t_memcomp

t_overlap
t_real

(a) Single precision.

 0.5

 1

 1.5

 2

 5 10 15 20 25 30

N
o
rm

al
iz

ed
 p

re
d
ic

te
d
 e

x
ec

u
ti

o
n
 t

im
e

(a
v
g
)

Matrix Id

abs(t_mem − t_real) ~ 14.9%
abs(t_memcomp − t_real) ~ 22.8%
abs(t_overlap − t_real) ~ 10.5%

t_mem
t_memcomp

t_overlap
t_real

(b) Double precision.

Figure 3: Predicted execution time normalized over the real execution time for each matrix (average over all possible
combinations of blocks and methods). Average differences of predicted from real execution time are also depicted.

Model single precision double precision
#correct off. from best #correct off. from best

MEM 12 6.0% 11 6.9%
MEMCOMP 11 8.8% 17 4.2%
OVERLAP 17 1.5% 19 1.9%

Table IV: Total number of optimal predictions for each
model and the difference in performance between the real
performance of the model’s selection and the optimal per-
formance (average over all matrices is presented).

solely the working set of the algorithm, did not produce
very accurate selections.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we studied and evaluated a wide set of
blocked methods on a matrix suite consisting of a variety
of matrices from different application domains. We showed
that a single blocking method cannot fit all matrices, and
that there still exist cases where the standard CSR provides
the best performance. For that reason, we proposed two
new performance models that aid in the selection of the
correct storage format and its proper configuration. Our
models account also for the computational part of the kernel
and for the memory latency hiding mechanisms, such as
hardware prefetching, that modern commodity architectures
offer. We compared these models with the classic memory
bandwidth-aware model, showing that they can provide more
accurate selections and predictions. As a future work, we
intend to extend these models to also account for memory
latencies, which in some cases consist the main performance
bottleneck of SpMV. Another important future direction is
to consider the adaptation of these models on multicore
platforms. Finally, we plan to develop more intelligent and
adaptive performance models for the execution of sparse
kernels based on machine learning.

AKNOWLEDGEMENTS

This work was supported by the Greek Secretariat of
Research and Technology (GSRT) and the European Com-
mission under the program 05AKMWN95.

REFERENCES

[1] R. C. Agarwal, F. G. Gustavson, and M. Zubair. A high
performance algorithm using pre-processing for the sparse
matrix-vector multiplication. In Proceedings of the 1992
ACM/IEEE conference on Supercomputing, pages 32–41,
Minneapolis, MN, United States, 1992. IEEE Computer So-
ciety.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato,
J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and H. V. der
Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM, 1994.

[3] A. Buttari, V. Eijkhout, J. Langou, and S. Filippone. Perfor-
mance optimization and modeling of blocked sparse kernels.
International Journal of High Performance Computing Appli-
cations, 21(4):467–484, 2007.

[4] T. Davis. The University of Florida sparse matrix collection.
NA Digest, vol. 97, no. 23, June 1997. http://www.cise.ufl.
edu/research/sparse/matrices.

[5] G. Goumas, K. Kourtis, N. Anastopoulos, V. Karakasis,
and N. Koziris. Understanding the performance of sparse
matrix-vector multiplication. In Proceedings of the 16th
Euromicro Conference on Parallel, Distributed and Network-
Based Processing (PDP 2008), Toulouse, France, 2008. IEEE
Computer Society.

[6] W. D. Gropp, D. K. Kaushik, D. E. Keyes, and B. F.
Smith. Toward realistic performance bounds for implicit
CFD codes. In International Parallel CFD 1999 Conference,
Williamsburg, VA, United States, 1999.

[7] E. Im and K. Yelick. Optimizing sparse matrix-vector mul-
tiplication on SMPs. In Ninth SIAM Conference on Parallel
Processing for Scientific Computing. SIAM, March 1999.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 5 10 15 20 25 30

N
o

rm
al

iz
ed

 e
x

ec
u

ti
o

n
 t

im
e

Matrix Id

t_mem
t_memcomp

t_overlap

(a) Single precision.

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 5 10 15 20 25 30

N
o

rm
al

iz
ed

 e
x

ec
u

ti
o

n
 t

im
e

Matrix Id

t_mem
t_memcomp

t_overlap

(b) Double precision.

Figure 4: Actual performance of each method’s selection normalized over the best overall performance for each matrix.

[8] E.-J. Im and K. A. Yelick. Optimizing sparse matrix compu-
tations for register reuse in SPARSITY. In Proceedings of the
International Conference on Computational Sciences – Part
I, pages 127–136. Springer-Verlag, 2001.

[9] V. Karakasis, G. Goumas, and N. Koziris. Exploring the effect
of block shapes on the performance of sparse kernels. In
IEEE International Symposium on Parallel and Distributed
Processing (Workshop on Parallel and Distributed Scientific
and Engineering Computing with Applications), Rome, Italy,
2009. IEEE.

[10] K. Kourtis, G. Goumas, and N. Koziris. Improving the perfor-
mance of multithreaded sparse matrix-vector multiplication
using index and value compression. In Proceedings of the
2008 37th International Conference on Parallel Processing,
Portland, Oregon, United States, 2008. IEEE Computer So-
ciety.

[11] J. D. McCalpin. STREAM: Sustainable memory bandwidth
in high performance computing, 1995. http://www.cs.virginia.
edu/stream/.

[12] A. Pinar and M. T. Heath. Improving performance of sparse
matrix-vector multiplication. In Proceedings of the 1999
ACM/IEEE conference on Supercomputing, Portland, OR,
United States, 1999. ACM.

[13] Y. Saad. SPARSKIT: A basic tool kit for sparse matrix
computations, 1994.

[14] O. Temam and W. Jalby. Characterizing the behavior of sparse
algorithms on caches. In Proceedings of the 1992 ACM/IEEE
conference on Supercomputing, pages 578–587, Minneapolis,
MN, United States, 1992. IEEE Computer Society.

[15] R. Vuduc. Automatic Performance Tuning of Sparse Matrix
Kernels. PhD thesis, University of California, Berkeley, 2003.

[16] R. Vuduc, J. W. Demmel, K. A. Yelick, S. Kamil, R. Nish-
tala, and B. Lee. Performance optimizations and bounds
for sparse matrix-vector multiply. In Proceedings of the
2002 ACM/IEEE conference on Supercomputing, pages 1–35,
Baltimore, MD, United States, 2002. IEEE Computer Society.

[17] R. W. Vuduc and H.-J. Moon. Fast sparse matrix-vector
multiplication by exploiting variable block structure. In
High Performance Computing and Communications, volume
3726 of Lecture Notes in Computer Science, pages 807–816.
Springer Berlin/Heidelberg, 2005.

[18] J. Willcock and A. Lumsdaine. Accelerating sparse matrix
computations via data compression. In Proceedings of the
20th annual International conference on Supercomputing,
pages 307–316, Cairns, Queensland, Australia, 2006. ACM.

[19] S. Williams, L. Oilker, R. Vuduc, J. Shalf, K. Yelick, and
J. Demmel. Optimization of sparse matrix-vector multiplica-
tion on emerging multicore platforms. In Proceedings of the
2007 ACM/IEEE conference on Supercomputing, Reno, NV,
United States, 2007. ACM.

