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Abstract—The Sparse Matrix-Vector Multiplication kernel ex-
hibits limited potential for taking advantage of modern shared
memory architectures due to its large memory bandwidth re-
quirements. To decrease memory contention and improve the
performance of the kernel we propose two compression schemes.
The first, called CSR-DU, targets the reduction of the matrix
structural data by applying coarse grain delta encoding for the
column indices. The second scheme, called CSR-VI, targets the
reduction of the numerical values using indirect indexing and
can only be applied to matrices which contain a small number
of unique values. Evaluation of both methods on a rich matrixset
showed that they can significantly improve the performance of the
multithreaded version of the kernel and achieve good scalability
for large matrices.

I. I NTRODUCTION

In recent years the processor industry has performed a tech-
nology shift towards chip multiprocessor (CMP – multicore)
designs due to the difficulties in trying to achieve higher
performance using conventional techniques such as frequency
scaling [1], [2]. As a result the research community has a
revitalized interest in shared memory architectures and the
problem of application scalability up to a large number of
processing cores is considered of vital importance. Different
classes of applications have different scalability properties
with regard to shared memory architectures. Applications
characterized by good temporal locality scale well, since each
core can work independently using local data residing in its
cache, without interfering with the operation of other cores.
On the other hand, applications with streaming access patterns
are characterized by poor temporal locality and tend to exhibit
poor scaling due to contention on the memory subsystem.

An important and ubiquitous computational kernel with
streaming memory accesses is the Sparse Matrix-Vector multi-
plication (SpMxV). SpMxV is used in a large variety of appli-
cations in scientific computing and engineering. For example,
it is the basic operation of iterative solvers, such as Conjugate
Gradient (CG) and Generalized Minimum Residual (GMRES),
extensively used to solve sparse linear systems resulting from
the simulation of physical processes that are described by
partial differential equations [3]. Furthermore, SpMxV isa
member of one of the ”seven dwarfs”, which are classes of

applications that are believed to be important for at least the
next decade [4].

The distinguishing characteristic of sparse matrices is that
they are populated by a large number of zero elements. Thus,
it is highly inefficient to perform operations on these matrices
using typical (dense) array structures. Instead, special storage
schemes are used, which target not only the efficient storageof
the matrix in terms of space, but also the efficient executionof
various operations by performing only the necessary actions.
Thus, the common approach is to store only the non-zero val-
ues of the matrix, and employ additional indexing information
about the position of these values. In this paper a distinction
will be made between data that are used for the representation
of the matrix structure (index data), and data that represent
the numerical values of the matrix elements (value data).

In our recent work [5], as well as in related literature [6],
the memory subsystem, and more specifically the memory
bandwidth, has been identified as the main performance bot-
tleneck of the SpMxV kernel when executed in a uniprocessor
environment. Obviously, if more processing elements access
the main memory through a common bus, this performance
bottleneck will become more severe. Consequently, it is ex-
pected that a multithreaded version of the kernel, targeted
for shared memory architectures, will have poor performance
scaling as the number of processing elements increases. An
approach for alleviating this problem is the reduction of the
data that need to be accessed during the execution of the
kernel (working set). In this direction and using the standard
CSR [3], [7] sparse format as a starting point, we propose
two storage formats:CSR-DUandCSR-VI[8]. CSR-DU is a
general format that reduces the index data using coarse grain
delta encoding for the compression of column indices, while
CSR-VI is a specialized format that exploits the redundancy
of matrices with a large number of common values using
indirect value accesses. The intrinsic basis of compression is
to trade data storage volume for computation. We argue that
as the number of processing elements that share the memory
subsystem increases, this tradeoff will become more beneficial
for the performance of memory bound applications such as
SpMxV, even if it results in degraded performance in the
uniprocessor case.

We perform an experimental evaluation of the benefits of the



aforementioned formats in a multithreaded environment. Our
experimental results confirm that the multithreaded version of
the SpMxV kernel exhibits poor scalability in a typical modern
shared memory architecture and that the proposed compression
schemes can alleviate the pressure on the memory subsystem
leading to significant performance improvement. The rest of
the paper is organized as follows: Section II provides an
introduction to various issues that are related to this workand
sets the context for the rest of the paper, while Section III
discusses the related literature. Sections IV and V briefly
present the two compression methods and Section VI contains
the results of the experimental performance evaluation of the
methods in question in a shared memory architecture. The
paper is concluded in Section VII.

II. PRELIMINARIES

A. Shared Memory Architectures

While shared memory architectures have been studied ex-
tensively in the past [9], the current trend of multicore pro-
cessors, along with indications for many-core next-generation
processors [10] has motivated the research community to
revisit the performance issues of shared memory architectures
and to investigate methods for allowing applications to scale
up to a large number of processing units. A difference between
multicore processors and classic SMP systems is that in
the former different cores may share a part of the cache
hierarchy (e.g. the L2 or the L3 cache). Cache sharing is an
important factor of the system’s performance and can be either
constructiveor destructivefor a given application, depending
on whether threads scheduled on the cores that share a cache
operate on common data or not.

B. Sparse Matrix Formats and SpMxV

The most commonly used storage format for sparse matrices
is the Compressed Sparse Row (CSR) format [3], [7]. In CSR
the matrix is stored in three arrays:values, row_ptr and
col_ind. Thevalues array stores the non-zero elements of
the matrix in row-major order, while the other two arrays store
indexing information:row_ptr contains the location of the
first (non-zero) element of each row within thevalues array
andcol_ind contains the column number for each non-zero
element. The size of thevalues andcol_ind arrays are
equal to the number of non-zero elements (nnz), while the
row_ptr array size is equal to the number of rows (nrows)
plus one. An example of the CSR format for a6 × 6 sparse
matrix is presented in Fig. 1. Other generic formats are the
Compressed Sparse Column (CSC), which is similar toCSR
storing columns instead of rows, and the Coordinate format
(COO), where each non-zero is stored as a triplet along with
the coordinates of its location in the matrix.

The SpMxV operation (y = Ax), is the multiplication
of a sparse matrixA with a (dense) vectorx with the
result stored in another (dense) vectory. The operation is
easily implemented for matrices stored in CSR form. The
SpMxV code for a matrix withN rows in CSR format is:

for (i=0; i<N; i++)
for (j=row_ptr[i]; j<row_ptr[i+1]; j++)

y[i] += values[j]*x[col_ind[j]];

The working set (ws) of the SpMxV operation consists of
the matrix and vector data and its size is expressed by the
following formula:

ws = csr size + vectors size =

(nnz × (idx s + val s) + (nrows + 1) × idx s)

+ (nrows + ncols) × val s

where idx s and val s is the memory size required for the
storage of an index and a value respectively. Since for real-
life sparse matrices it holdsnnz ≫ nrows, ncols, the most
dominant terms of the working set is the size of thecol_ind
andvalues arrays, which havennz elements. Commonly,
vectorsx andy have less than232 elements due to memory
size restrictions and thus a4-byte integer is used for index
storage. Floating point values, on the other hand, normally
require double precision, so the typical value forval size
is 8 bytes. Under these conditions, the values constitute the
larger portion of the working set by a factor of2/3, if we
consider only thecol_ind and values arrays. Thus, in
the scenario of4-byte indices and8-byte values, it is evident
that the value data size reduction can be more beneficial in
terms of the totalws reduction. Another observation is that the
vast majority of the data are accessed in a streaming fashion,
hence the characterization of the SpMxV kernel as a streaming
application in previous paragraphs.

C. Parallelizing SpMxV

There are a number of partitioning schemes for parallelizing
the SpMxV kernel on a shared memory architecture. In the
case of the CSR format the coarse grainrow partitioning
scheme is usually applied [11], where different blocks of
rows are assigned to different threads (see Fig. 2). Each
thread operates on different parts of therow_ptr, col_ind,
values, andy arrays, while all threads access elements on
thex array. Since access onx is read only, the data can reside
in each processor’s cache without causing invalidation traffic
due to the cache coherency protocol. In theory, the common
use ofx offers potential for constructive cache sharing, but
in practice this potential is not realized, since there is limited
space for the rest of the data, which are disjoint for each thread.
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Fig. 2: Row partitioning on SpMxV

The complementary approach to row partitioning iscolumn
partitioning, where each thread is assigned a block of columns.
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row_ptr : ( 0 2 5 6 9 12 16 )

col_ind : ( 0 1 1 3 5 2 2 4 5 0 3 4 0 2 3 5 )

values : ( 5.4 1.1 6.3 7.7 8.8 1.1 2.9 3.7 2.9 9.0 1.1 4.5 1.1 2.9 3.7 1.1 )

Fig. 1: Example of the CSR Storage Format

Although this approach is more naturally applied to the
CSC format, it can also be applied to the CSR format. An
advantage of column partitioning is that each thread operates
on a different part of thex array, which allows for better
temporal locality on the array’s elements in case of distinct
caches. A disadvantage, on the other hand, is that all threads
must perform writes on all the elements of they array. To
avoid cache-line ping-pongs the best practice is to have each
thread use its owny array and perform a reducing addition
at the end of the multiplication. Additionally, in the case of
the CSR format column partitioning may lead to empty or
small rows, and to a degradation of performance due to loop
overheads. The combined method ofblock partitioning, where
each thread is assigned an arbitrary two-dimensional block,
has the additional benefit of allowing configurable data sizes
for each thread. This property is important for machines with
processing elements that have limited memory space (e.g.
the Cell processor). The interaction of each of the above
parallelization approaches with specific sparse matrices and
their effect on performance are beyond the scope of this paper
and will be a matter of future research.

For our experimental evaluation we used row partitioning.
It can be easily implemented for CSR and the effect of
the proposed compression methods on the performance of
the SpMxV kernel are, for the most part, orthogonal to
the partition method used. Another issue with regard to the
parallelization of the kernel is the balancing of the workload
of each thread. We applied a static balancing scheme based
on the non-zero elements, where each thread is assigned
approximately the same number of elements and thus the same
number of floating-point operations.

III. R ELATED WORK

A. Serial SpMxV

Due to the importance of SpMxV there is an abundance
of scientific work targeting the optimization of the serial
version of the kernel. A number of alternatives to CSR have
been proposed such as BCSR (Blocked-CSR), JD (Jagged
Diagonal), CDS (Compressed Diagonal Storage) and Ellpack-
Itpack [3], [7]. These formats try to exploit regularities in the
structure of the sparse matrix in order to reduce the storage
requirements and the execution time of SpMxV. Moreover,
there is a large number of works that propose optimization
techniques for the efficient execution of the kernel. Several of
these works [12]–[15] aim at the optimization of the irregular
and indirect accesses on thex vector using methods such as
matrix reordering, register blocking and cache blocking. Other
works [16], [17] are concerned with the performance problems

that arise in matrices with a large number of rows with small
length.

B. Index Compression

A significant part of the SpMxV optimization techniques
reported in the related literature result in index data reduction.
Typical examples are blocking methods such as BSCR and
VBR [18] that store only per-block index information. To our
knowledge, the only work that explicitly targets the compres-
sion of the index data is [19]. In this paper, Willcock and
Lumsdaine propose two methods:DCSR, which compresses
column indices using a byte-oriented delta encoding scheme
to exploit the highly redundant nature of thecol_ind array
andRPCSR, which generates matrix-specific dynamic code by
applying aggressive compression on column indices patterns
for the whole matrix. We will focus our comparison on the
DCSR method, which operates on the same level as CSR-DU.
DCSR encodes the matrix using a set of six command codes
for primitive sub-operations that can be used to implement
the SpMxV kernel. Examples of such sub-operations are
the increment of the current row and column index, and
the multiplication of a number of the matrix values with
the appropriate vector elements. A significant performance
problem of this approach is that the decoding of these sub-
operations must be performed very often, which results in
frequent mispredicted branches. This problem is dealt by a
form of unrolling, where patterns of frequent instances of six
of these sub-operations are grouped together allowing them
to be executed sequentially without branches. Contrarily,our
approach, which is also based on delta encoding, tackles
the problem of branch misprediction performance penalties
in a more basic level by being more coarse grained. This
allows for a much simpler and general implementation, while
sustaining a small performance gain gap with regard to the
DCSR method. Moreover, it can handle worst-case scenarios
of the DCSR method such as matrices that exhibit large
variation with regard to the patterns encountered. A more
detailed comparison of the two methods can be found in [8].

C. Value Compression

Despite that, in the common case, the value data con-
stitute the larger part of the working set of SpMxV, there
has been little research effort targeting its reduction. Lee et
al. [20] exploit matrix symmetry by storing only half the
matrix (reducing significantly both value and index data).
Additionally, there exist a number of works in the general
area of scientific computation that are related to the value
compression for the SpMxV kernel. Keyes [21], proposes the



use of lower precision representation for data that do not
pose problems in the convergence procedure, while Langou
et al. [22] propose mixed precision algorithms, which deliver
double precision arithmetic, while performing the bulk of the
work in single precision. Even though these works target more
on the exploitation of characteristics of modern architectures
(e.g. vectorization), they also contribute significantly to the
required memory bandwidth reduction. In a different context
Burtscher [23] proposes a method for the efficient compression
of double precision floating point values targeting networkdata
transfers.

D. Multithreaded SpMxV

As far as the multithreaded version of the code is concerned,
past work focuses mainly on SMP clusters, where researchers
either apply and evaluate known uniprocessor optimization
techniques (e.g. register and cache blocking) on SMPs, or
examine reordering techniques to improve locality of refer-
ences and minimize communication cost [24]–[27]. Recently,
Williams et al. [11] presented an evaluation of SpMxV on
a set of emerging multicore architectures. Their study covers
a wide and diverse range of high-end chip multiprocessors,
including recent multicores from AMD (Opteron X2) and Intel
(Clovertown), Sun’s Niagara2 and platforms comprised of one
or two Cell processors. Their work includes a rich collection
of optimizations, including some that are targeted specifically
at multithreading architectures on a set of14 matrices. In
their conclusions they state that memory bandwidth could bea
significant bottleneck and advocate working set reduction tech-
niques. It should also be noted that one of the optimizations
they apply is a simple index reduction technique, in which
16-byte indices are used when this is applicable.

IV. I NDEX COMPRESSION

Our general approach for the compression of the index
data is to search for regularities in the sparse matrix and
exploit them by using specially tailored run-time methods.
Hence, in our scheme the matrix is logically divided into areas,
called units, each of which is characterized by its regularity
type. More specifically, we target the exploitation of matrix
areas that exhibit some level of density, without necessarily
containing contiguous non-zero elements. This is achieved
using a delta-encoding scheme. In our storage format, called
CSR-DUfor CSR Delta Unit, each unit type is characterized
by the required storage size for the delta values that express the
column distance between consecutive non-zeros. For example,
areas for which the distance between all consecutive column
indices is less than28 = 256, require only one byte for
the storage of each delta value. This approach compared
to the separate encoding of each delta value using variable
length integers achieves less data size reduction, but allows
for innermost loops with minimum overheads, if the unit size
is large enough. It should be noted that a limitation of CSR-DU
is that units can not span multiple rows, which results in small
units for rows with a small number of elements.

The CSR-DU method uses a byte-array calledctl to store
all the indexing information required for each unit, which

unit
sections

uflags usize ujmp ucis

0 u8, NR 2 0 1
1 u8, NR 3 1 2,2
2 u8, NR 1 2 -
3 u8, NR 3 2 2,1
4 u8, NR 3 0 3,1
5 u8, NR 4 0 2,1,2

TABLE I: Example of the information included in thectl
structure for the matrix presented in Fig. 1

consists of four sections:uflags, usize, ujmp anducis.
uflags andusize have1 byte size each and contain the
unit type and size respectively.ujmp is a variable length
integer that denotes the distance of the unit’s column index
from the previous one, whileucis is an array ofusize− 1
elements, which contains the delta values for the remaining
column indices. The storage size of theucis elements (1,
2, 4 or 8 bytes) is stored inuflags, along with a flag
that marks the beginning of a new row. An example of the
information included in thectl structure for the matrix of
Fig. 1 is given in Table I. There exist six units in total,
each of which has delta values that are stored in1 byte (u8)
and include a marker for the existence of a new row (NR).
A simplified code snippet of the SpMxV operation for the
CSR-DU format is presented in Fig. 3. First, theuflags and
usize variables are extracted from thectl array and if this
unit belongs in a new row, the appropriate initializations are
performed. Next, theujmp distance is extracted and the proper
multiplication code is executed based on the type of the unit.
The compression procedure of CSR-DU is straightforward and
can be performed inO(nnz) steps by scanning the matrix
elements once, and keeping appropriate information in buffers
until a unit is finalized. This means that the construction
process of CSR-DU involves no overhead in terms of time
complexity compared to that of CSR. We parallelize using the
row partitioning scheme. Both the compression method and
the SpMxV kernel can be easily extended to support multiple
threads. The information that each thread needs is an offsetin
thectl, values andy arrays, to mark the beginning of its
data, and the total number of rows that have been assigned to
it.

V. VALUE COMPRESSION

Conversely with index data, value data do not inherently
contain redundancy in the general case. Nevertheless, we have
noticed that a significant number of matrices from our exper-
imental set contain a small number of unique values relative
to the total non-zero values (nnz). To exploit this redundancy
we propose a simple storage format, called CSR-VI for CSR
Value Index, where only the unique values are kept, along with
indices to them. More specifically, thevalues array of CSR
is replaced with two arrays:vals_unique andval_ind.
The first contains the unique matrix values and the second
the index in thevals_unique array for each of thennz
matrix elements. For this scheme to be beneficial in terms of
working set reduction, the value indexing data size must be
significantly smaller than that of the initial numerical values.
A simple approach towards this goal is to enforce smaller



uflags = ctl_get_u8(ctl);
usize = ctl_get_u8(ctl);
if ( flags_new_row(uflags) ){

y_indx++; x_indx=0;
}
x_indx += ctl_get_jmp(ctl);
switch ( flags_type(uflags) ){

case CSR_DS_U8:
for (;;) {

y[y_indx] += (*values++) * x[x_indx];
if (--usize == 0){

break;
}
x_indx += ctl_get_u8(ctl)

}
break;

case CSR_DS_U16:
...

}

Fig. 3: code snippet for the SpMxV kernel for CSR-DU

storage requirements for the individual value indices compared
to the original values. Hence, the indices size in our method
is determined by the number of the unique values that need
to be addressed. For example, if there existuv unique values
and it holds28 < un ≤ 216, then a2-byte integer will be used
for each value index.

An example of this value structure is presented in Fig. 4,
which contains the Fig. 1 matrix values. The SpMxV kernel
implementation for CSR-VI is presented in Fig. 5 and can be
easily derived from the CSR case by replacing the direct ac-
cesses ofvalues with an indirect access ofvals_unique
based on the value ofval_ind. Even though the resulting
code includes an additional memory reference for each of the
nnz elements, it will lead to fewer memory accesses when the
number of unique values is relatively small. The compression
method for CSR-VI is implemented using a hash table and
as in CSR-DU its complexity isO(nnz). The multithreaded
version is trivially derived from the serial by providing toeach
thread the first and the last row that it needs to process.

for(i=0; i<N; i++)
for(j=row_ptr[i]; j<row_ptr[i+1]; j++){

val = vals_unique[val_ind[j]];
y[i] += val*x[col_ind[j]];

}

Fig. 5: SpMxV kernel for the CSR-VI storage format

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

Our experiments where conducted on an8-core system,
comprising of two Intel Clovertown processors (Fig. 6). The
Clovertown processor is a quad core processor which is built
by combining two Woodcrest chips. Each of the Woodcrest
chips contains two cores with two private32 KB 8-way caches
for instructions and data and a shared unified4 MB 16-way

L2 cache. The processors interface with the main memory
with the Intel 5000p Memory Controller Hub, which provides
4 channels of fully buffered DDR2 DIMM memory. All the
cores operate on2 GHz.

C0 L1 C1 L1

L2

C2 L1 C3 L1 C6 L1 C7 L1C4 L1 C5 L1

L2 L2L2

Fig. 6: A 8-core system comprising of two Clovertown pro-
cessors

The system was running a64-bit version of Linux (2.6.23)
and the compiler used was version4.2.3 of gcc with the
optimization flag -O3. The storage size for the indices and
values were32 and64 bits respectively. The parallelization of
the various versions of the SpMxV kernel was done explicitly,
using the pthread interface of the GNU libc library (NPTL
2.7). Moreover, thesched_setaffinity() system call
was used to bind the various threads to predefined proces-
sors. The results presented in the following sections include
experiments for1, 2, 4 and8 threads. The threads are always
scheduled to run to as “close” as possible processors. For
example2 threads are scheduled on cores which share the L2
cache, unless otherwise stated, while4 threads are scheduled
on the same physical package.

The code for the SpMxV kernel was optimized to write the
y[i] value at the end of each innermost loop by keeping
the intermediate result in a register. The experiments were
conducted by measuring the execution time of128 consecutive
SpMxV operations with randomly createdx vertices. It should
be noted that we made no attempt to artificially pollute the
cache after each iteration, in order to better simulate iterative
scientific application behavior, where the data of the matrices
are present in the cache because either they have just been
produced or they were recently accessed.

B. Matrix Set

One of our initial requirements was to perform experiments
on a rich and diverse set of matrices. In [5] we have presenteda
performance evaluation of the SpMxV kernel for100 matrices,
the majority of which have been selected from Tim Davis’s
collection [28]. These matrices will be used as our basis, and
can be identified by their name and id number (see [5]). Two
basic classes of matrices can be distinguished, depending on
whether the working set of the kernel fits completely into
the L2 cache or not. In an iterative SpMxV computation,
matrices which have working set larger than the L2 cache
may experience capacity misses, while matrices with a smaller
working set experience only compulsory misses and generally
perform better. Since in this work we are mainly concerned
with matrices that perform poorly due to memory bandwidth
limitations, we only consider matrices from the second class.
Hence, we reject matrices with working set less than3/4
of the L2 size, in order to also cover border-line cases
(e.g. memory accesses due to conflict misses), which for our
systems translates tows ≥ 3 MB. We also reject the dense
matrix. The resulting set consists of77 matrices (2-13, 15 17,



val_ind ( 0 1 2 3 4 1 5 6 5 7 1 8 1 5 6 1 )

vals_unique ( 5.4 1.1 6.3 7.7 8.8 2.9 3.7 9.0 4.5 )

Fig. 4: Example of the value indexing structure for the CSR-VI format for the matrix presented in Fig. 1

21, 25, 26, 36, 40-42, 44-53, 55-100) and we will refer to it
asM0.

The utilization of multiple cores with separate caches in-
creases the total cache size available to the kernel. Thus, it
is possible for the working set of a matrix inM0, to fit
completely in the system’s cache as more cores are used. In
this case the kernel is expected to exhibit significant speedup,
which may even be superlinear. Conversely, the performance
of matrices that are too large to fit in the total L2 cache will
differ significantly from the rest. Thus, we divideM0 into
two subsets:ML, which contains matrices with a working
set that is larger or equal to4 × L2 + 1MB = 17MB (2, 5,
8-10, 15, 40, 45, 46, 50-53, 55-57, 59, 61-64, 69-78, 80-100)
andMS , which contains the rest of the matrices.

C. CSR Performance

Table II presents overall results (average, maximum and
minimum) for the performance of the CSR SpMxV kernel for
the MS , ML andM0 sets. The results of the serial version
are expressed in floating operations per second (FLOPS), while
the results for the multithreaded versions in terms of speedup
relative to the corresponding serial version. There are two
results presented for2 threads, one for cores with a shared
cache and one for cores on the same die but with separate
caches, which confirm that cache sharing is destructive for
SpMxV. As expected, CSR scales rather poorly (3.44) for 8
threads, and especially for matrices that belong in theML

set (2.12), due to large memory bandwidth requirements. On
the other hand, CSR performance for matrices of theMS set
scale relatively well for8 cores (6.19) due to reduced memory
contention on the bus.

MS (25 matrices) ML (52 matrices) M0

core(s) avg max min avg max min avg
1 619.4 886.6 465.2 477.8 594.4 202.4 523.6

2 (1×L2) 1.17 1.62 0.90 1.15 1.40 1.07 1.16

2 (2×L2) 1.93 2.59 1.24 1.24 1.47 1.09 1.46

4 2.63 4.32 1.54 1.28 1.73 1.12 1.72

8 6.19 8.71 2.12 2.12 6.30 1.58 3.44

TABLE II: overall CSR SpMxV performance (serial and
multithreaded)

D. CSR-DU

Fig. 7 provides a comparison of the CSR and CSR-DU
methods by showing CSR-DU speedups relative to the CSR
serial version for each matrix inM0 (bars), along with the
corresponding speedups of the CSR multithreaded version
(black squares). In addition the matrix size reduction relative
to the original CSR size is also presented (text). It should

be noted, that the matrices are sorted by their speedup and
each sub-graph has a different scale. Table III presents over-
all performance improvements of CSR-DU against the CSR
version that utilizes the same number of threads, in terms of
speedups. The last column for theMS andML sets contains
the number of matrices for which the usage of CSR-DU results
in a non-negligible slowdown (speedup < 0.98).
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Fig. 7: Detailed performance evaluation of the CSR-DU mul-
tithreaded SpMxV kernel

A first observation is that CSR-DU performs better than
CSR on average. In the uniprocessor case our method performs
similarly with the CSR (2% improvement). This indicates a
discrepancy with previous results in [8], which in general
showed better performance improvement on a Woodcrest pro-



MS (25 matrices) ML (52 matrices) M0

core(s) avg max min <0.98 avg max min <0.98 avg
1 1.02 1.12 0.80 5 1.01 1.14 0.69 17 1.01

2 1.24 1.49 1.06 0 1.10 1.19 0.90 2 1.15

4 1.24 1.89 0.81 4 1.15 1.36 0.99 0 1.18

8 1.05 1.40 0.86 8 1.20 1.82 0.99 0 1.15

TABLE III: Overall comparison of CSR-DU and CSR multi-
threaded versions

cessor. We attribute this change in the lower clock frequency of
the Clovertown processor, which makes the computation/mem-
ory access tradeoff less effective. Experimental results for
a number of matrices in the Woodcrest processor with its
frequency reduced to2 GHz support this claim. Conversely
with the serial case, the multithreaded version of CSR-DU
achieves more noticeable speedups on theM0 set:15%, 18%
and 15% for 2, 4 and 8 threads respectively. This suggests
that CSR-DU and index compression schemes in general can
be beneficial for shared memory architectures, even if the
serial performance is similar or worse than that of CSR. For
theMS set, the performance improvement of CSR-DU drops
significantly (from24% to 5%) for 8 cores since a large part
of the working set resides in the cache leaving little space
for optimization by its reduction. Moreover, as the number of
cores increases so does the number of matrices that exhibit a
significant slowdown when the CSR-DU method is applied in
the MS set (0, 4, 8 for 2, 4 and8 threads respectively). On
the other hand, for matrices of theML set CSR-DU exhibits
significant performance scalability as it reaches20% for 8
cores and there are no matrices for which the CSR-DU results
in significant slowdown for4 or 8 threads.

E. CSR-VI

Contrary to the CSR-DU method, CSR-VI can be applied
meaningfully only to matrices with a large number of common
values. Thus, to elaborate on the applicability of the method
to a given matrix, we consider thetotal-to-unique(ttu) values
ratio, which is defined as the fraction of the total values (nnz)
to the number of values that are unique in the matrix. A high
total-to-unique values ratio indicates that the matrix is fitting
for the CSR-VI method, while a small one shows that it will
most likely result in slowdown. We use the empirical criterion
ttu ≥ 5 to select the appropriate matrices fromM0. The
resulting set consists of30 matrices and we will refer to it
asMvi

0
. It should be noted that theMvi

0 matrices constitute
approximately the39% of M0, which indicates that CSR-VI
can be applied to an important number of real-world matrices.
By applying an analogous rationale as before, we split theMvi

0

set into two subsets (Mvi

L
and Mvi

S
), separating matrices

which are memory-bound even when all the cores are used,
from those which are not.Mvi

L
contains22 matrices (9, 40,

45, 46, 50-53, 57, 61, 63, 69, 70, 73, 80, 82, 84-87, 93, 99)
andMvi

S
8 (26, 41, 42, 44, 47, 67, 68, 79). The results of the

experimental evaluation for the CSR-VI method are presented
in an identical way as the results of the CSR-DU method.
Fig. 8 contains detailed results for the CSR-VI and the CSR
methods, expressed as speedups relative to the serial CSR

performance, and Table IV contains overall comparison results
between CSR and CSR-VI.
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Fig. 8: Detailed performance evaluation of the CSR-VI mul-
tithreaded SpMxV kernel

Mvi

S
(8 matrices) Mvi

L
(22 matrices) Mvi

0

core(s) avg max min <0.98 avg max min <0.98 avg
1 1.03 1.17 0.94 2 1.12 1.54 0.65 7 1.10

2 1.30 1.56 0.99 0 1.36 2.07 0.80 3 1.35

4 1.25 2.04 0.96 1 1.55 2.16 1.00 0 1.47

8 1.02 1.15 0.92 3 1.59 2.50 0.99 0 1.44

TABLE IV: Overall comparison of CSR-VI and CSR multi-
threaded versions

The performance behavior of the CSR-VI method is analo-
gous to the one of the CSR-DU. For the serial case CSR-VI
achieves a10% over CSR, which again is significantly less
than the results presented in [8] and can be attributed to
the lower frequency of the processor in our system. For the
multithreaded case the average speedups against CSR over
the Mvi

0 set are35%, 47% and 44% for 2, 4 and 8 threads
respectively. This fact shows that the CSR-VI method can be
very beneficial for matrices with a small number of unique
values, when multiple threads are employed. The average
performance improvement ofMvi

0
is marginally reduced by

3% from 4 to 8 cores, due to the behavior of matrices in
theMvi

S
set, for which the CSR-VI speedups drop drastically

(from 25% to 2%). On the other hand the matrices in theMvi

L

set remain memory bound and their speedup improves by a
small factor (from55% to 59%) when all8 cores are used.

VII. C ONCLUSIONS

We have presented two sparse-matrix storage formats,
named CSR-DU and CSR-VI, that target the performance
improvement of the multithreaded SpMxV operation by alle-
viating the contention on the memory subsystem via index and
value matrix data compression respectively. More specifically,
CSR-DU applies a coarse grain delta encoding for the column
indices, while CSR-VI uses indirect indexing for the numerical



value data and can be applied only to matrices that exhibit
a large number of common values. Both formats exhibit
significant performance improvement when compared to the
CSR version over a rich set of matrices and especially for
those which are large enough to preserve the memory bound
nature of the kernel. In addition, the proposed methods are
stable, as there was no memory bound matrix for which they
resulted in a significant slowdown for4 or 8 threads when
compared to CSR. Since we compare our methods against
a CSR version with32-bit indices and64-bit values the
CSR-VI method achieved substantial better improvement than
CSR-DU. It should be noted though, that this imbalance is
subject to change, as the available physical memory of ma-
chines increases and it becomes possible to support matrices
which require64-bit index addressing. Finally, we argue that
our approach designates a general optimization methodology
for memory intensive problems (e.g. graph or database algo-
rithms), where compression sacrifices CPU cycles to alleviate
the memory pressure and can potentially lead to substantial
performance improvements in multithreaded execution, even
if it leads to slowdowns in the uniprocessor case.
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