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Abstract— Future high-throughput Grids may integrate mil-
lions or even billions of processing and data storage nodes.
Services provided by the underlying Grid infrastructure may
have to be able to scale to capacities not even imaginable today.
In this paper we concentrate on one of the core components of
the Data Grid architecture - the Replica Location Service - and
evaluate a redesign of the system based on a structured peer-
to-peer network overlay. We argue that the architecture of the
currently most widespread solution for file replica location on the
Grid, is biased towards high-performance deployments and can
not scale to the future needs of a global Grid. Structured peer-
to-peer systems can provide the same functionality, while being
much more manageable, scalable and fault-tolerant. However,
they are only capable of storing read-only data. To this end, we
propose a revised protocol for distributed hash tables that allows
data to be changed in a distributed and scalable fashion. Results
from a prototype implementation of the system suggest that
Grids can truly benefit from the scalability and fault-tolerance
properties of such peer-to-peer algorithms.

Index Terms— Grid, Data Grid, data management, replica
location service, peer-to-peer networks, distributed hash tables

I. I NTRODUCTION

The Grid is a wide-area, large-scale distributed comput-
ing system, in which remotely located, disjoint and diverse
processing and data storage facilities are integrated under a
common service-oriented software architecture [1], [2]. In the
hardware layer, a Grid may be comprised of any component
that can connect to a shared network and provide the necessary
software-level services to be remotely used and administered.
Individual computers, clusters, computing farms, network-
attached storage arrays, tape libraries or even specialized sen-
sors and scientific instruments can all be part of a single Grid.
The software infrastructure of the Grid - the Grid middleware
- is responsible of providing the mechanisms of fair and secure
resource sharing among the end users of the system. Further-
more, Grid users are organized in “Virtual Organizations”.
The Virtual Organization is a fundamental Grid structure, with
the purpose of enabling the collaboration between multiple
mutually distrustful participants. The participants’ degree of
relationship may be varying to none and their collaborations
are based on resource sharing in order to achieve a common
goal.

One of the Grid’s most essential and critical components is
the data management layer. Pioneering Grid efforts [3] were

early faced with the problem of managing extremely large-
scale datasets - in the order of petabytes - shared among broad
and heterogeneous end user communities. It was essential
to design a system architecture capable of meeting these
advanced requirements in the context of the Grid paradigm.
The proposed Data Grid architecture [4] allows the distributed
storage and accessibility to a large set of shared data resources,
by defining a set of basic data services interacting with one
another in order to expose well known, file-like APIs and
semantics to end user applications and other higher-level Grid
services. In the Data Grid framework, “data” can be anything:
From small text files, to big video streams or huge scientific
experiment inputs/outputs.

One of the core building blocks of the Data Grid architecture
is the Replica Location Service. The Grid environment may
require that data is to be scattered globally due to individual
site storage limits, but also remain equally accessible from all
participating computing elements. In such cases, it is common
to use local caching of data to reduce the network latencies that
would normally add up as a constant overhead of remote data
access operations. In Grid terminology, local copies of read-
only remote files on storage elements are called “replicas” [5],
while applications running on the Grid request such local file
instances through specialized Grid data management services.
To work with a file, a Grid application must first ask the
Replica Location Service to locate corresponding instances of
the requested item so that if a local replica already exists,the
application can use normal file semantics to access its contents.
In the case only remote copies are found, another component
of the Data Grid can take on the responsibility of copying
the remote data to the local node and update the replica
location indices with the position of the new instance. Data
replicas help in improving the performance of applicationsthat
require to frequently access remotely placed information.By
replicating data closer to the application, the overall access
latency is much shorter and the aggregate network usage
is reduced. Moreover, through replica-aware algorithms, data
movement services can exploit multiple replicas to boost
transfer throughput and data recovery tools can reproduce lost
original data from their corresponding replicated instances.

Modern Grid middleware distributions like the Globus
Toolkit [6] include replica location and management services,
as they have become an integral component of the Grid
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infrastructure. Moreover, the techniques adopted by the Grid
community over the past years in this direction have evolved
significantly. The initial design of a centralized Replica Lo-
cation Service was swiftly put aside in favor of a distributed
approach. The most widespread solution currently deployed
on the Grid, namely the Giggle Framework [7], constructs
a uniform filename namespace of unique per VO identifiers
(logical filenames - LFNs) and manages the mappings of these
identifiers to physical locations of files (physical filenames -
PFNs). LFNs are used by the applications to locate data, no
matter the source of the request or the physical location of the
information. PFNs, which are used by the Replica Location
Service and other Data Grid services, are structured similar to
a URL, describing the access protocol, the site and the path
in the site directory structure for a given replica. In orderto
distribute the replica location data throughout the Grid, Giggle
makes use of two main components, the local replica catalogs
(LRCs) and the replica location indices (RLIs):

• An LRC maintains information about logical filenames
such as access lists, creation date and various other file
attributes. It also stores a map of all physical filenames
that are replicas of a logical filename (LFN to PFN maps).
Given an LFN, the LRC will return the associated PFN
set.

• An RLI maintains information about the catalogs and the
associated logical filenames. It can find which catalog
holds the replica file list for a given LFN (LFN to LRC
map).

In a default deployment scenario, each participant of a VO
manages an LRC, while the overall orchestration of the RLS
is done by a single central RLI per VO. When requirements
escalate, multiple RLIs can be deployed in parallel, providing
optional coarse-grain load-balancing and fail-over features to
the replica location infrastructure. The Giggle Framework
instructs that multiple indices and catalogs form a two-level
hierarchy, with each LRC linked to multiple RLIs and vice
versa. Multiple RLIs can also form tree-like structures.

RLI

RLI RLI RLI

LRC LRC LRC

Replica Location Indices

Local Replica Catalogs

LRC

Fig. 1. Giggle deployment example

While scalability had been a major concern during the
design of the Giggle architecture, we believe that the distri-
bution approach used may reach its limits, when the number
of logical to physical filename mappings or the number of
catalogs and indices increase in several orders of magnitude.

Giggle is optimized for a high-performance Grid - a Grid that
consists of highly-available computing and storage elements,
interconnected by high speed networks, running mainly super-
computing applications. The two-level hierarchical structure
is not inherently fault-tolerant, as an upper-layer RLI failure,
caused by a hardware crash or a network blackout, may bring
down the whole system.

Nevertheless, replica management with Giggle may be ad-
equate for current Grid deployments that reside mainly in the
high-end scientific area. Grids that interconnect computing and
storage resources with scientific instruments, enable scientists
from academic or government institutions, although scattered
world-wide, to collaborate on a common task, usually the
study of experimental results. These early, “academic” Grids,
provide scientists with cutting-edge tools and platforms for
information acquisition, storage and processing, but more
importantly help researchers identify the architectural require-
ments and design problems that have to be addressed in order
to make a global-scale, business-ready Grid infrastructure a
reality. The vision of a commonplace Grid that will service
billions of end users daily, by providing them ubiquitous
access to a vast range of public and private information and
services, is realizable, but not as yet feasible. The future, high-
throughput Grid may be constituted of millions of independent,
interconnected computers, all contributing their unused cycles
to the processing needs of a world-wide community. We
believe that in order to scale the Grid to these numbers, there
is a need to delegate the execution of some of its core services
to the edges of its infrastructure. In a network of millions and
billions, a task distributed to tens or even hundreds still acts
as a “centralized” resource.

We propose that a truly scalable solution to the file replica
location problem could be based on the usage of a structured
peer-to-peer overlay network. The next section of this paper
includes some comments on Giggle’s design limitations, while
in the following sections, we concentrate on the observation
that although peer-to-peer systems were designed for dis-
tributed and scalable lookups, they need a built-inupdate
mechanism in order to fit in the requirements set by the Replica
Location Service design. We analyze the problems associated
with supporting such operations in distributed hash tables, look
at previous designs that try to solve the problem by integrating
a data management layer on top of a read-only peer-to-peer
overlay and propose an algorithm to enable inherent mutable
data storage and management in the peer-to-peer network
level. In addition, we present how our algorithm can be
incorporated into a simple distributed hash table protocol,
discuss on the method and evaluate its merits, elaborating on
performance results from an early implementation. This paper
is concluded with references to related work in the area and
thoughts on future work in the same direction.

II. L IMITATIONS OF THE GIGGLE FRAMEWORK

Delving into the internals of the Giggle Framework, one
can argue that it cannot offer the scalability and performance
needed for a global Grid infrastructure. A Replica Location
Service must implement partitioning in both the levels of data
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storage and data operations in order to be scalable. The Giggle
framework may allow tuning of its index and catalog topology
via a variety of parameters, but even in a fully distributed
environment, the architecture of the service will only allow
data storage partitioning. Operations on data, such as changes
in the LFN to PFN mappings, will all be concentrated at the
node responsible for storing a particular mapping. As a result,
specific LRCs may get overloaded when very popular LFNs
require frequent updates of their associated PFN lists.

The Giggle prototype implementation [8] requires that data
partitioning is configured manually. If the RLS has huge data
sets to handle and storage requirements change, the partic-
ipating nodes must manually adapt to the new situation by
specifying new distribution parameters. Moreover, regardless
of partitioning, the catalogs and indices cannot automatically
handle a new addition or deletion of a participating catalogor
index. In general, Giggle parameters cannot be dynamically
changed. Although the designers have envisioned a member-
ship management service that will allow the system to deal
with unplanned LRC and RLI joins and failures, the current
static configuration adds a tremendous cost in the management
of the replica location service. Every time a new entity is added
in the network or a system parameter needs update the whole
service may have to be reconfigured.

Data partitioning has been incorporated in the Giggle
framework, both as a method to achieve scalability and as
a technique to reduce network and system utilization when
LRCs update RLIs. LRCs are required to refresh RLIs, not
only in order to inform them on the latest mapping updates, but
also to prevent them from deleting old mappings because of
timeouts. The update mechanism between the mesh of indices
and catalogs has to be as efficient as possible, as it can limit
the scalability of the system. The Giggle prototype leaves
data partitioning disabled by default. Instead, it is argued that
scalability can be achieved by utilizing a soft state protocol.
Either full or incremental, updates are asynchronous, so when
an add or delete operation occurs, it is not immediately prop-
agated to the appropriate index server. Moreover, soft updates
can be very demanding on the size of the data involved. To
reduce the overhead of such transactions, they are compressed
using Bloom filters - a lossy compression scheme. Eventually,
because of asynchronous updates and lossy compression of
data, the requesting clients may get false positive answersand
appropriate error-handling mechanisms must be developed at
the client-side.

According to the experimental analysis of the prototype im-
plementation, compression of the updates induces performance
overheads when the filter is initialized and every time a number
of hash functions need to be calculated for a filename. In order
to reduce the performance loss, the relational database backend
is not used when compression is enabled. Instead, there is
a need for a customized in-memory data structure and the
Giggle code has to support two different methods for the same
function. The code becomes more complicated and the logical
and organizational advantages of a database backend are lost.
On the other hand, although the database backend offers easy
modeling and deployment of catalogs and indices, it requires
non-trivial fine tuning (e.g. disabling database flush in MySQL

or forcing periodic vacuums in PostgreSQL). When database
products used are third-party, these modifications may prove
even harder to implement.

To deploy and use the Replica Location Service, a large
number of parameters have to be tuned, such as the number
of RLIs, the function used to partition the LFN or the Replica
Site namespace, the degree of redundancy in the index space,
the compression method of the soft state updates and the type
of the scheduled updates of the catalogs. So, Giggle is difficult
to deploy and manage and it can not automatically adopt to
unadvertised subsystem joins or failures. We also believe that
the pursuit of scalability has led Giggle to employ complex
mechanisms to update the data which will in turn limit the
efficiency of data retrieval operations on very large networks.
There are currently no performance results of a very large RLS
system serving millions or billions of mappings, so there isno
practical way to plead for this hypothesis, but we feel that there
can be an easier way to implement a Replica Location Service
for the Grid, with the help of an already scalable, fault-tolerant
and self-configurable peer-to-peer network.

III. PEER-TO-PEER LOOKUP SYSTEMS AND THEGRID

The idea of using a peer-to-peer lookup system for locating
file replicas in a Grid environment is not new. Ian Foster,
Adriana Iamnitchiet al. in [9], [10], recognize that the peer-
to-peer and Grid research communities have much in common
and even more to learn one from another. Services that rely
on a peer-to-peer infrastructure can scale without application
and environment specific fine-tuning to millions of peer par-
ticipants, all of which can use the system simultaneously. The
network is designed in a scalable way and its potential grows
as more participants join, in contrast to traditional client-server
models, where overall network performance degrades as more
and more clients try to access the centralized resources. The
authors of the Giggle system credit the work being done
in peer-to-peer location discovery systems as most relevant
to theirs. Actually, all peer-to-peer systems try at least to
solve the same basic problem as Giggle: Given a unique
global identifier, locate in a distributed and scalable way the
resource in question [11]. On top of the location service
some of the systems will also provide additional services to
the participating peers, such as file downloading or media
streaming. It is no coincidence that peer-to-peer systems are
usually called “lookup systems”.

Peer-to-peer architectures can fall into two basic categories,
depending on the structure of the overlay network produced
when nodes join and leave the system. Structured systems, or
distributed hash tables (DHTs), such as Kademlia [12], Chord
[13], Tapestry [14], CAN [15] and others, impose a specific
virtual structure which accommodates peers in particular slots
as they join the network. On the other hand, unstructured
systems like Gnutella leave the peers free to join in any partof
the network and the connection graph formed resembles that
of a power-law network [16]. Each family of systems has its
own advantages and disadvantages over the other: In structured
systems the lookup procedure is highly deterministic (will
almost always return a result if there is such a value in the
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network) and any operation will almost certainly succeed ina
predefined number of steps (usually equal to log(N), where N
is the number of participating nodes). In unstructured systems,
lookups are performed by flooding the network with messages.
While there is a high probability that a query will reach a node
that can reply for a specific item, it is not definite that the
lookup will succeed. If the item is not popular and is stored
only at a node far away from the requesting peer, the lookup
message will never reach it. Also, flooding in these systems
requires far more messages than in distributed hash tables,thus
utilizing the network in the extreme. The only advantage of
unstructured peer-to-peer systems lies in their ability tohandle
free-text search queries efficiently and in very few steps, as
they inherit a dominant characteristic of power-law networks
[17].

In the Grid environment one is not concerned about search-
ing the file servers for a specific file. This operation is provided
by metadata servers [18] or can be hidden in application
specific semantics. The problem is how to locate the physical
file names (replica identifiers) that may be available, when
knowing the logical file name of a resource (a unique per VO
file identifier). There is also a strong need that this lookup
procedure will complete in the minimum possible steps, while
maintaining the scalability and availability properties of the
lookup system layer. It is obvious that a centralized server
storing (LFN, PFN) tuples would handle the lookup operation
in a single step, but this solution would neither be scalable
nor fault-tolerant. As more servers are added in the lookup
layer and data and queries are distributed among them, more
messages are needed to traverse the system hierarchy so to
reach the desired mappings.

Structured peer-to-peer systems are designed to service
storage and retrieval (lookup) of key-value pairs. Keys are
always unique for the whole system and serve as identifiers
for values. Most of the distributed hash table implementations
generate keys directly from the values by computing the SHA1
hash of the data provided for storage. This method produces
uniform distributions of keys in a 160-bit identifier space.As
a result of the above, in order to utilize distributed hash tables
for file replica lookups in a Grid environment, we have to
make the following assumptions:

• One overlay peer-to-peer network will be deployed per
VO (a single identifier space).

• A key will not be generated by hashing the value of
an item. It should correspond to the hash of the logical
filename (LFN) of the resource. It will be the unique
identifier complementing all data operations.

• A value for a key will actually be a data structure - a list
containing the physical locations of replicas (PFNs) for
a given identifier.

Also note that in peer-to-peer terminology, the termsnet-
work and overlay refer to the network of virtual intercon-
nections created between the physicalpeersor nodesof the
system. The latter can practically be applications runningon
machines connected to the Grid. Other Grid services and end-
user applications manipulate data stored in the context of
the peer-to-peer overlay, by interacting with nodes through

predefined APIs.

IV. D ESIGN

The main problem associated with the usage of a distributed
hash table to store file replica locations, lies in the disability of
the peer-to-peer network to handle mutable data. DHTs may
provideget andsetoperations, but there is no straightforward
way to update data. When a key-value pair is stored into a
DHT it is destined to remain in the overlay unchanged until
it expires. This shortcoming, emerged as an effect of a DHT
design trade-off. The more these systems are made resilient
to failures and random node joins and leaves, the more they
lose the ability to trace which node is responsible for storing
a specific data item. This is inevitable: In a static network
there would be no need to duplicate and cache data. Key-
value pairs would be placed in specific locations. In DHTs,
key-value pairs are copied to nodes that are “close” to the
ID of the key and cached around the network. There is no
algorithm that can return the exact location(s) of a key-value
pair in a given moment (this is also a prerequisite for peer-to-
peer network security [19]).

DHTs are made for building dynamic overlays that store
non-frequently changing data. While this may seem sufficient
for storing the file contents of a read-only file distribution
network, it is not enough to serve the needs of the Data Grid’s
RLS. Theupdateoperation is absolutely necessary for storing
replica locations, as PFN mappings for a given LFN could
change frequently and there should be a way for propagating
the modifications throughout the network as soon as possible.

One could employ timeout metadata associated with each
key-value pair for changing values in the overlay. Data in
DHTs expires after a predefined interval since its initial
publication, and it is the responsibility of systems external to
the peer-to-peer network to update or delete it. But exploiting
timeouts to support mutable data is not a solution. The use of
small timeout values and the shift of responsibility for change
management to an external system, would create scalability
problems, destroy any caching advantages and induce severe
network utilization for frequent data updates. Moreover, trig-
gering value changes on a timely basis, would not guarantee
immediate propagation of updates. Some lookups would seem
successful, but the results would include stale values.

A. Using logs to store and trace data modifications

A solution to the problem of storing mutable data in a
distributed hash table is presented by the designers of Ivy
[20]. Ivy is a distributed file system functioning on top of
a structured peer-to-peer network. All operations on files and
their contents are stored in a distributed hash table, arranged
in a linked list of changes - a log. Each participant of the
file system knows the identifier of the last data item he put in
the system, while each data item contains a list of operations
done on the file system and a pointer to the next key-value pair
(previous set of changes). By traversing the log from the most
recent to the oldest item, the file system can “remember” the
latest state of each file and directory for a given participant.
As a log exists for each participant of the file system, there
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is no need to lock files and directories for concurrent usage
between different participants.

To use this algorithm in the file replica location scenario,
one could store a list of PFN changes for each LFN. Each
list item (key-value pair) would contain a PFN, a status
(valid/invalid) and an identifier pointing to the next item (older
change). There is also a need to store the mutable head pointer
of the list in a well-known place. In Ivy, each participant stores
his own head pointer locally and consults the distributed hash
table only when walking through the list of immutable change
records. In analogy, every member of a VO participating in
the management of the VO’s file replicas could store a pointer
to his change list. Nevertheless, Ivy solves one problem but
introduces another. The method used for managing changes
is completely inefficient. The use of a distributed log limits
scalability and performance. There may be a need to go
through hundreds of key-value lookups in the distributed hash
table in order to find the current mappings for a given LFN,
which would incur an intolerable cost in terms of network
messages. Even more, Ivy’s log records never get deleted as
they are needed for recovery in case of network failures and
the cost for managing the status of which entries should be
deleted could be enormous.

An analogous design is followed by OceanStore [21].
OceanStore implements a file management layer on top
of an underlying Tapestry network. Each file created into
OceanStore is associated with a DHT-level key-value pair -
the root block, which contains information about the file and
an index to its correspondingdata blocks(also maintained in
the DHT). To update the contents of a file, one must find
its root block, as the root block’s maintainer is responsible
for serializing write and append requests. Each time a file
changes, a newversion is added to the network. This new
version is practically a new set of key-value pairs: a new
root block pointing to new data blocks - only those that have
been altered from the previous instance of the file. OceanStore
also supports file replication. There can be multiple instances
of a file in an OceanStore network, but one of them has to
be tagged as theprimary replica. Whenever an instance of
a replicated file changes, the updates have to be propagated
from the primary replica to all other replicas as well. The
update model used is very similar to the one utilized by Ivy,
although updates are handled at the file - not the participant
- level. Also, the overall design is mainly tailored to support
file system semantics. If OceanStore was to be used as a basis
for the construction of a scalable RLS, one could associate a
“file” to each LFN. Its contents would then be the list of all
valid PFN mappings. Furthermore, one more index would be
required; the directory of the latest root block IDs for each
series of “file” changes. In an hierarchical naming model, this
index could be the parent “directory” containing the file, but
in flat naming schemes, using another catalog to find replica
locations would prove inefficient.

B. Enabling mutable data storage

The ideal solution would be to enable mutable data storage
at the level of each individual key-value pair stored at the

peer-to-peer system. We argue that this could be done with
a very simple addition to the basic distributed hash table
algorithm. DHTs may distribute the data in numerous peers
of the system, but the only important nodes for every key-
value pair are the ones returned by the lookup procedure. If we
change the value in these nodes there is a very high probability
that upon subsequent queries for the same key, at least one
of the updated ones will be contacted. Of course this is not
enough, as the network is not a static entity and the nodes
responsible for a specific key-value pair storage change over
time. DHTs support dynamic node arrivals and departures, so
storage relationships between data items and nodes may be
altered over time in an unpredictable manner.

As a consequence, everylookup should always query all
nodes responsible for a specific key-value pair, compare the
results based on some predefined version vector (indicating
the latest update of the value) and propagate the changes to
the nodes it has found responsible for storage but not yet up-
to-date with the latest value. This requires that the algorithm
for locating data items will not stop when the first value
is returned, but continue until all available versions of the
pair are present at the initiator. The querying node will then
decide which version to keep and send correspondingstore
messages back to the peers that seem to hold older or invalid
values. Updates could therefore be implemented through the
predefinedset operation, as version checking would also be
done by nodes receivingstore commands. The latter should
check their local storage repositories for an already-present
identifier, and if there is a conflict, keep the latest version
of the two values in hand. A simple data versioning scheme
could be accomplished by using timestamp indicators along
every key-value pair.

With the above design in mind, we have tweaked the
Kademlia protocol to support mutable data storage. While
these changes could have been applied to any DHT (like Chord
or others), we picked Kademlia as it has a simpler routing
table structure and uses a consistent algorithm throughout
the lookup procedure. Kademlia relies on a XOR operation
between identifiers to find which nodes are responsible for
storing a specific key-value pair. As in any DHT, Kademlia’s
peers and data items have identifiers from the same address
space. XOR is used as thedistance function, to indicate which
are the closest nodes to a given key. By default, when a node
of a Kademlia network is instructed to lookup a value through
the network, it will issueα parallel queries to theκ closest
peers it is aware of, and continue the process as long as no
value is returned or it keeps learning of peers even closer to
the requested target key. The system-wide parameterκ, also
specifies the number of copies maintained for each data item
and controls the size of routing tables in peers. Bothα and
κ variables are set at each participating node and affect only
local service performance.

According to the Kademlia protocol, three RPCs take
place in any data storage or retrieval operation:FIND NODE,
FIND VALUE andSTORE. To store a key-value pair, a node
will first need to find the closest nodes to the key. Starting
with a list of closest nodes from its own routing table, it
will send parallel asynchronousFIND NODE commands to



6

the top α nodes of the list. Nodes receiving aFIND NODE
RPC should reply with a list of at mostκ closest peers to the
given ID. The requesting node will collect the results, merge
them in the list, sort by distance from the key, and repeat the
process of querying other nodes in the list, until allκ closest
nodes have replied. Actually, the initiator does not wait for all
α concurrent requests to complete before continuing. A new
command can be generated every time one of theα inflight
RPCs returns new closest nodes candidates. When the list is
finalized, the key-value pair is copied to the corresponding
peers viaSTORE RPCs. Kademlia instructs that all original
key-value pairs are republished in this way every hour, and
expire in 24 hours from their initial publication.

To retrieve a value from the system, a node will initiate
a similar query loop, usingFIND VALUE RPCs instead of
FIND NODEs. FIND VALUE requests return either a value
from the remote node’s local repository, or - if no such valueis
present - a list of at mostκ nodes close to the key. In the later
case, this information helps the querying node dig deeper into
the network, progressing closer towards a node responsible
for storing the value at the next step. The procedure stops
immediately when a value is returned, or when theκ closest
peers have replied and no value is found. On a successful
hit, the querying node will also cache the data item to the
closest peer in the lookup list that did not return the value,
with a STORE RPC. Moreover, whenever a node receives a
command from another network participant, it will check its
local key-value pairs and propagate to the remote peer the ones
that are closer to its ID. This guarantees that there are copies
of values to all of their closest nodes and helps peers receive
their corresponding data items when they join the network.

In the scaled-down example of a Kademlia network shown
in Figure 2, both nodes and key-value pairs are mapped to a
common 4-bit identifier space. The XOR induced topology is
easier to understand if the address space is represented as a
binary tree. Nodes and key value pairs are treated as the leaves
of the structure, while each node has more routing information
for near subtrees and stores items closer to its corresponding
leaf. Forκ = 2, a data item will be stored at least at its two
closer nodes (k3 is stored atn2 andn3). Another node can
start locating it in the system by asking a close peer for the
item’s key. If the remote node can not return a result, it will
instead answer with a list of nodes that are even closer to the
requested identifier. By repeating the process, the initialpeer
will finally reach a node responsible for storing a specific key-
value (n4 locatesk3, stored atn3, by using the list of closest
nodes returned byn1).

Our modified lookup algorithm works similar to the
FIND NODE loop, originally used for storing values in the
network. We first find all closest nodes to the requested key-
value pair, throughFIND NODE RPCs, and then send them
FIND VALUE messages. The querying node will check all
values returned, find the most recent version and notify the
nodes having stale copies of the change. Of course, if a
peer replies to theFIND VALUE RPC with a list of nodes
it is marked as not up to date. When the topκ nodes have
returned a result (either a value or a list of nodes), we
send the appropriateSTORE RPCs. Nodes receiving aSTORE

command should replace their local copy of the key-value pair
with its updated version. Storing a new key in the system is
done exactly in the same way, with the only difference that
the latest version of the data item is provided by the user.
Moreover, deleting a value equals to updating it to zero length.
Deleted data will eventually be removed from the system when
it expires.

C. Discussion

In the original Kademlia protocol, alookup operation will
normally require at most log(N) hops through a network
of N peers. The process of searching for the key’s closest
nodes is complementary to the quest for its value. If an
“early” FIND VALUE RPC returns a result, there is no need
to continue with the indirectFIND NODE loop. On the other
hand, the changes we propose merge thelookup and store
operations into a common two-step procedure: Find the closest
nodes of the given key and propagate the updated value.
Cached items are ignored and lookups will continue until
finding all nodes responsible for storing the requested data
item. The disadvantage here is that it is always necessary to
follow at least log(N) hops through the overlay to discover an
identifier’s closest peers.

Nevertheless, the lookup procedure is also used to propagate
updated values to the network. So the extra cost in messages
is equal to the “price” needed by the infrastructure to support
mutable data. There certainly can not be a way to support
such a major change in the peer-to-peer system without paying
some cost, either in terms of bytes exchanged or in terms
of increased latency required for a result (two benchmarking
metrics proposed as a common denominator in evaluating var-
ious peer-to-peer systems [22]). Moreover, the aforementioned
drawback in lookup performance could even be accounted
as a feature: distributed hash table nodes generally exploit
messages exchanged in favor of updating their routing tables.
The more messages, the more fault-tolerant the system gets.
Also, there is no longer a need to explicitly redistribute data
items every hour, as values are automatically republished on
every usage. However, the system will still reseed key-value
pairs to the network when an hour passes since they were last
part of a store or lookup operation (effectively propagating
updates).

Our algorithm can not guarantee that the latest view of
a data item will be its latest version, as much as DHTs in
general cannot guarantee that the key-value pairs stored in
the network will be there when needed. There is always a
percentage of success, bound to many parameters that impact
the network’s reliability and performance. A peer-to-peer
network continues to be a dynamic entity, prone to random
node joins and leaves, unexpected network failures and diverse
usage patterns. It is obvious that although storage of the latest
version is propagated to the closest network participants from
the querying node’s point-of-view and each node individually
tries to inform the nodes it knows closer to a key-value pair
when it receives RPCs, a major network breakdown may leave
stale information in the system, if all nodes responsible for an
updated version’s storage fail. It is with very high probability
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Fig. 2. Scaled-down example of a Kademlia network

though, that at least one node informed on a specific data item
update will be found in a subsequent retrieve operation for any
key-value pair.

The changes we propose for Kademlia can easily be adopted
by other DHTs as well. There is a small number of changes
required and most (if not all of them) should happen in the
storage and retrieval functions of the protocol. There was
no need to change the way Kademlia handles the node join
procedure or routing table refreshes. Nevertheless, thereis
still a requirement that key-value pairs expire 24 hours after
their last modification. Among other advantages refreshing
provides, it is the only way of completely clearing up the
ID space of deleted values.

V. I MPLEMENTATION

We implemented the full Kademlia protocol plus our ad-
ditions in a very lightweight C program. In the core of the
implementation lies a custom, asynchronous message handler
that forwards incoming UDP packets to a state machine, while
outgoing messages are sent directly to the network. Except
from the connectionless stream socket, used for communi-
cating with other peers, the message handler also manages
local TCP connections that are used by client programs.
The program runs as a standard UNIX-like daemon. Client
applications willing to retrieve data from the network or store
key-value pairs in the overlay, first connect to the daemon
through a TCP socket and then issue the appropriateget or
setoperations. All items are stored in the local filesystem and
the total requirements on memory and processing capacity are
minimal.

For our tests we used a cluster of eight SMP nodes, each
running multiple peer instances. Another application would
generate insert, update and select commands and propagate
them to nodes in the peer-to-peer network. In the following
paragraphs we will present some results from this early system
prototype. While our software is not yet complete, it can help
us study the basic characteristics and behavior of the peer-to-
peer overlay and evaluate our algorithm and the potential ithas
to support the file replica location needs of Grid applications.

A. Performance in a static network

To get some insight on the scalability properties of the
underlying DHT, we first measured the mean time needed for

the system to complete each type of operation for different
amounts of key-value pairs and DHT peers. Kademlia’s pa-
rameters were set toα=3 andκ=4, as the network size was
limited to a few hundred nodes.

Figures 3, 4 and 5 show that the implementation takes less
than 2 milliseconds to complete a select operation and an
average of 2.5 milliseconds to complete an insert operation
in a network of 512 nodes with up to 8K key-value pairs
stored in the system. The overall system seems to remain
scalable, although there is an evident problem with disk
latency if a specific node stores more than 8K key-value pairs
as individual files in the filesystem. This is the reason behind
the performance degradation of the four node scenario as the
amount of mappings increases. Asκ has been set to 4, all
data items are present at all 4 nodes. When the network has
8K key-value pairs, each node has a copy of all 8K mappings.
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Fig. 3. Select operations

Nevertheless, systems larger than 4 nodes behave very well,
since the mean time to complete queries does not experience
large deviations as the number data items doubles in size.
Also, the graphs representing inserts and updates are almost
identical. The reason is that both operations are handled inthe
same way by the protocol. The only functional difference is
that inserts are done in an empty overlay, while updates are
done after the inserts, so the version checking code has data
to evaluate.



8

 0

 5

 10

 15

 20

 1  2  4  8  16  32

m
e
a
n
 
t
i
m
e
 
(
m
s
e
c
)

data set size (K)

4 node

8 nodes

64 nodes

512 nodes

Fig. 4. Insert operations

 0

 5

 10

 15

 20

 1  2  4  8  16  32

m
e
a
n
 
t
i
m
e
 
(
m
s
e
c
)

data set size (K)

4 nodes

8 nodes

64 nodes

512 nodes

Fig. 5. Update operations

B. Performance in a dynamic network

Our second goal was to measure the performance of the
overlay under high levels of churn (random participant joins
and failures), even in a scaled-down scenario. Using the
implementation prototype, we constructed a network of 256
peers, storing a total of 2048 key-value pairs, for each of the
following experiments. Node and data identifiers were 32 bits
long and Kademlia’s concurrency and replication parameters
were set toα=3 and κ=4 respectively. A small value of
κ assures that whatever the distribution of node identifiers,
routing tables will always hold a subset of the total population
of nodes. Also it guarantees that values will not be over-
replicated in this relatively small network.

Each experiment involved node arrivals and departures,
as long as item lookups and updates, during a one hour
timeframe. Correspondingstartup, shutdown, get and set
commands were generated randomly according to a Poisson
distribution, and then issued in parallel to the nodes. We started
by setting the item update and lookup rates to 1024operations

hour
,

while doubling the node arrival and departure rates. Initially
64 new nodes were generated per hour and 64nodes

hour
failed.

The arrival and departure rates were kept equal so that the

network would neither grow nor shrink. Figure 6 shows the
average query completion time during a one minute rolling
timeframe for four different node join and fail rates. In the
simulation environment there is practically no communication
latency between peers. Nevertheless, timeouts were set to 4
seconds.
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1) Handling timeouts:As expected, increasing the num-
ber of node failures, caused the total time needed for the
completion of each query to scale up. High levels of churn,
result in stale routing table entries, so nodes send messages to
nonexistent peers and are forced to wait for timeouts before
they can continue. Kademlia nodes try to circumvent stale
peers inget operations, as they takeα parallel paths to reach
the key in question. It is most likely that at least one of
these paths will reach a cached pair, while other paths may be
blocked, waiting for replies to timeout. Our protocol additions
require that caching is disabled, especially for networks where
key-value pairs are frequently updated.
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Fig. 7. Adapting theα concurrent requests to changes in the topκ entries
of the lookup list

Instead, we try to lower query completion times by making
nodes dynamically adapt their query paths as other peers reply.
In the first phase of theget operation, whereFIND NODE
requests are issued, nodes are instructed to constantly wait for
a maximum ofα peers to reply from the closestκ. If a reply
changes theκ closest node candidates, the requesting node
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may in turn send more than one commands, thus having more
thanα requests inflight, in contrast toα in total as proposed
by Kademlia. This optimization yields slightly better results
in total query completion times, in expense to a small increase
in the number of messages. Figure 7 shows a comparison of
the two algorithms in a network handling 256 node arrivals
and departures per hour.

2) Handling lookup failures:High levels of churn also lead
to increasing lookup failures. Experiment results shown in
Table I suggest that as the rate of node arrivals and departures
doubles, the lookup failure rate grows almost exponentially. In
order to prove that the extra messaging cost by our protocol
additions can be exploited in favor of overall network fault-
tolerance, we reran the worst case scenario (512 node joins
and 512 node failures per hour) several times, while doubling
the lookup rate from 1024 up to 16384operations

hour
. It is evident

from the results presented in Table II, that even in a network
with very unreliable peers, a high lookup rate can cause the
corresponding failure rate to drop to values less than 1%. This
owes to the fact that lookup operations are responsible for
propagating key-value pairs to a continuously changing set
of closest nodes, while helping peers find and remove stale
entries from their routing tables.

TABLE I

LOOKUP FAILURES WHILE INCREASINGNODE ARRIVAL AND DEPARTURE

RATES

nodes
hour

64 128 256 512

Failures 0 2 32 154

Rate 0.00% 0.19% 3.12% 15.03%

The initial high failure rate is also dependent on the way
Kademlia manages routing tables. When a node learns of a
new peer, it may send corresponding values for storage, but
it is not necessary that it will update its routing table. For
small values ofκ and networks of this size, routing tables
may already be full of other active nodes. As a result, lookups
may fail to find the new closest peers to a key. A dominant
percentage of lookup failures in our experiments were caused
by nodes not being able to identify the latest closest peers of
a value. Also, Kademlia’s routing tables are designed to favor
nodes that stay longer in the network, but the random departure
scheme currently used by our simulation environment does not
exploit this feature.

TABLE II

LOOKUP FAILURES WHILE INCREASING THELOOKUP RATE

operations

hour
1024 2048 4096 8192 16384

Failures 162 106 172 126 84

131 91 137 80 58

163 63 145 116 106

143 61 130 120 87

Rate 15.82% 5.17% 4.19% 1.53% 0.51%

12.79% 4.44% 3.34% 0.97% 0.35%

15.91% 3.07% 3.54% 1.41% 0.64%

13.96% 2.97% 3.17% 1.46% 0.53%

C. Results and future work

The prototype implementation behaves very well in terms
of scalability and fault-tolerance, which has allowed us toplan
future experiments with much larger network sizes and data
set populations. To alleviate the problem with disk storage
in future versions of the implementation, we intend on using
database-like, single-file storage for local data on each node,
or alternatively, an embedded, lightweight database engine
like SQLite. Nevertheless, scaling the experiments from a
few hundred nodes to orders of magnitude upwards is not
straightforward, as it requires special considerations regarding
the limits of the underlying simulation hardware and software
[23]. We also plan on adding support for Kademlia’sacceler-
ated lookups.

Moreover, we are working in the direction of coupling our
implementation with a flexible peer-to-peer network simulator
that will allow us to conduct much larger experiments and
measure specific benchmarks relevant to DHT designs [22].
We are focusing on evaluating various aspects of the system,
while varying node network and computational performance
characteristics. As our prototype approaches production state,
we are also considering actual Grid and PlanetLab [24] test
deployments.

DHTs normally store successfully retrieved data at the nodes
performing the query and take advantage of cached items at
subsequent fetch operations. However, our modified Kademlia
protocol will not stop thelookup operation on a cache hit,
so we have disabled all caching in our implementation. A
question left open is how to incorporate a caching scheme
along our algorithm for distributed mutable data management.
If we enable caches there has to be a way of using them
without sacrificing the integrity of key-value pairs throughout
the network. We are currently investigating various cache
management schemes that could fit in as a solution to this
problem. There is a need to invalidate caches throughout the
network on every data item update. On the other hand, we
could just enable caches with small timeouts, especially for
replica location environments wherelookupsare much more
frequent thanstoresand strict data consistency is not a must.

Another open problem we are looking forward to address
in future work is security. The Grid software infrastructure
provides advanced security services which we would like to
incorporate in our application.

VI. RELATED WORK

Peer-to-peer overlay networks and corresponding protocols
have already been incorporated in other RLS designs. In a
recent paper [25], Min Caiet al., have replaced the global
indices of Giggle with a Chord network, producing a variant
of Giggle called P-RLS. A Chord topology can tolerate
random node joins and leaves, but does not provide data fault-
tolerance by default. The authors choose to replicate data in
the successor setof each root node (the node responsible
for storage of a particular mapping), effectively reproducing
Kademlia’s behavior of replicating data according to the
replication parameterκ. In order to update a specific key-value
pair, the new value is inserted as usual, by finding theroot node
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and replacing the corresponding value stored there and at all
nodes in itssuccessor set. While there is a great resemblance
to this design and the one we propose, there is no support for
updating key-value pairs directly in the peer-to-peer protocol
layer. It is an open question how the P-RLS design would cope
with highly transient nodes. Frequent joins and departuresin
the Chord layer would require nodes continuously exchanging
key-value pairs in order to keep the network balanced and the
replicas of a particular mapping in the correct successors.Our
design deals with this problem, as the routing tables insidethe
nodes are immune to participants that stay in the network for
a very short amount of time. Moreover, our protocol additions
to support mutable data storage are not dependent on node
behavior; the integrity of updated data is established onlyby
relevant data operations.

In another variant of an RLS implementation using a
peer-to-peer network [26], all replica location information is
organized in an unstructured overlay and all nodes gradually
store all mappings in a compressed form. This way each
node can locally serve a query without forwarding requests.
Nevertheless, the amount of data (compressed or not) that has
to be updated throughout the network each time, can grow
to such a large extent, that the scalability properties of the
peer-to-peer overlay are lost.

In contrast to other peer-to-peer RLS designs, we envision
a service that does not require the use of specialized servers
for locating replicas. According to our design, a lightweight
DHT-enabled RLS peer can even run at every node connected
to the Grid.

VII. C ONCLUSION

We believe that in future high-throughput Grid deployments,
core services - such as the RLS component of the Data Grid
architecture - should be distributed to as many resources as
possible. To this end, services must use distribution algorithms
with unique scalability and fault-tolerance properties - assets
already available by peer-to-peer architectures. In this paper,
we argue that a truly scalable and fault-tolerant Replica
Location Service can be based on a structured peer-to-peer
design (a distributed hash table).

Nevertheless, a read-only key-value pair storage facilityis
not adequate to store continuously changing replica location
mappings. The basic DHT algorithm has to be modified in
some way to enable mutable data storage. We have imple-
mented a prototype of a distributed hash table that will allow
stored data to be updated through the basicset command.
Our protocol additions that enable this new operation are very
simple and could easily be applied to any analogous peer-
to-peer system. We are currently trying to make the initial
implementation even more efficient and would like to evaluate
its performance in large scale experiments involving closeto
real-life situations.

The performance of the RLS depends on the effectiveness
of its underlying resource lookup algorithm. We do not expect
our DHT-based design to outperform the currently deployed
system - Giggle, which is based on an hierarchical distribution
model. In the contrary, we expect that high-performance Grid

deployments will continue to benefit from Giggle’s architec-
ture. However, we doubt that Giggle will be able to scale,
in order to cover the needs of an extremely large Grid. As
the mesh of catalogs and indices grows, the overall service
will experience serious bottlenecks in update operations.Also,
it requires tuning of various non-trivial parameters and uses
complex data structures and algorithms to distribute the lookup
data. Our peer-to-peer RLS can run at multiple machines per
site or even every machine of the Grid having a public IP
address, as the operational requirements are minimal. Fur-
thermore, the architecture of the network will ensure that as
more and more nodes join, the replica location infrastructure
will scale in storage capacity without significant losses in
lookup performance. DHT systems are proved to be extremely
scalable and can provide good fault-tolerance characteristics
with very simple deployment and management requirements.
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