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~ Abstract— Future high-throughput Grids may integrate mil-  early faced with the problem of managing extremely large-
lions or even bhillions of processing and data storage nodes.scale datasets - in the order of petabytes - shared among broa
Services provided by the underlying Grid infrastructure may a4 peterogeneous end user communities. It was essential

have to be able to scale to capacities not even imaginable today.t desi ¢ hitect bl f ti th
In this paper we concentrate on one of the core components of (0 U€SIgn a System architecture capable ol meeting these

the Data Grid architecture - the Replica Location Service - and advanced requirements in the context of the Grid paradigm.
evaluate a redesign of the system based on a structured peer-The proposed Data Grid architecture [4] allows the distedu

to-peer network overlay. We argue that the architecture of the storage and accessibility to a large set of shared datanessu

currently most widespread solution for file replica location on the by defining a set of basic data services interacting with one
Grid, is biased towards high-performance deployments and can . S
another in order to expose well known, file-like APIs and

not scale to the future needs of a global Grid. Structured peer- . - . >
to-peer systems can provide the same functionality, while being Se€mantics to end user applications and other higher-lendl G
much more manageable, scalable and fault-tolerant. However, services. In the Data Grid framework, “data” can be anything
they are only capable of storing read-only data. To this end, we From small text files, to big video streams or huge scientific
propose a revised protocol for distributed hash tables that allows experiment inputs/outputs

ﬂ?ﬁ tg bﬁoctg?pgeeﬁr;]nplaér?]':gt'gﬁ;id gfn?hsecaslggtlgr;asskﬂggégef#;s . One of the core building qucks of the Dgta Grid architecture
Grids can truly benefit from the scalability and fault-tolerance IS the Replica Location Service. The Grid environment may
properties of such peer-to-peer algorithms. require that data is to be scattered globally due to indafidu
Index Terms—Grid, Data Grid, data management, replica sjte storage limits, but also remain equally accessible fadl
location service, peer-to-peer networks, distributed hash tabke participating computing elements. In such cases, it is comm
to use local caching of data to reduce the network latenbs t
would normally add up as a constant overhead of remote data
|. INTRODUCTION access operations. In Grid terminology, local copies ofitea
The Grid is a wide-area, large-scale distributed computhly remote files on storage elements are called “replical” [
ing system, in which remotely located, disjoint and diverssghile applications running on the Grid request such local fil
processing and data storage facilities are integratedrumdeinstances through specialized Grid data management ssrvic
common service-oriented software architecture [1], [A]tHe To work with a file, a Grid application must first ask the
hardware layer, a Grid may be comprised of any compondReplica Location Service to locate corresponding instamde
that can connect to a shared network and provide the negesshe requested item so that if a local replica already exibts,
software-level services to be remotely used and admieidterapplication can use normal file semantics to access its otsnte
Individual computers, clusters, computing farms, networkn the case only remote copies are found, another component
attached storage arrays, tape libraries or even speciaize- of the Data Grid can take on the responsibility of copying
sors and scientific instruments can all be part of a singld.Grthe remote data to the local node and update the replica
The software infrastructure of the Grid - the Grid middlegvarlocation indices with the position of the new instance. Data
- is responsible of providing the mechanisms of fair and secueplicas help in improving the performance of applicatitvet
resource sharing among the end users of the system. Furtheguire to frequently access remotely placed informatiy.
more, Grid users are organized in “Virtual Organizationsteplicating data closer to the application, the overalleasc
The Virtual Organization is a fundamental Grid structuréghw latency is much shorter and the aggregate network usage
the purpose of enabling the collaboration between multipie reduced. Moreover, through replica-aware algorithnaga d
mutually distrustful participants. The participants’ deg of movement services can exploit multiple replicas to boost
relationship may be varying to none and their collaboratiotransfer throughput and data recovery tools can reprochste |
are based on resource sharing in order to achieve a comnoniginal data from their corresponding replicated insesnc
goal. Modern Grid middleware distributions like the Globus
One of the Grid’s most essential and critical components T®olkit [6] include replica location and management segsic
the data management layer. Pioneering Grid efforts [3] weas they have become an integral component of the Grid



infrastructure. Moreover, the techniques adopted by thd GGiggle is optimized for a high-performance Grid - a Grid that
community over the past years in this direction have evolvednsists of highly-available computing and storage el@sen
significantly. The initial design of a centralized Replica-L interconnected by high speed networks, running mainly isupe
cation Service was swiftly put aside in favor of a distriltitecomputing applications. The two-level hierarchical stuue
approach. The most widespread solution currently deployednot inherently fault-tolerant, as an upper-layer RLIuee,
on the Grid, namely the Giggle Framework [7], constructsaused by a hardware crash or a network blackout, may bring
a uniform filename namespace of unique per VO identifiedown the whole system.
(logical filenames - LFNs) and manages the mappings of theséNevertheless, replica management with Giggle may be ad-
identifiers to physical locations of files (physical filename equate for current Grid deployments that reside mainly e th
PFNs). LFNs are used by the applications to locate data, high-end scientific area. Grids that interconnect com ggind
matter the source of the request or the physical locatiohef tstorage resources with scientific instruments, enablessis
information. PFNs, which are used by the Replica Locatidnom academic or government institutions, although scadte
Service and other Data Grid services, are structured sitaila world-wide, to collaborate on a common task, usually the
a URL, describing the access protocol, the site and the patindy of experimental results. These early, “academict&ri
in the site directory structure for a given replica. In order provide scientists with cutting-edge tools and platforros f
distribute the replica location data throughout the GrigygB information acquisition, storage and processing, but more
makes use of two main components, the local replica catalaggportantly help researchers identify the architectuegjuire-
(LRCs) and the replica location indices (RLIS): ments and design problems that have to be addressed in order
« An LRC maintains information about logical filename¢o make a global-scale, business-ready Grid infrastracéur
such as access lists, creation date and various other fg@lity. The vision of a commonplace Grid that will service
attributes. It also stores a map of all physical filenamdullions of end users daily, by providing them ubiquitous
that are replicas of a logical filename (LFN to PFN maps®ccess to a vast range of public and private information and
Given an LFN, the LRC will return the associated PFIgervices, is realizable, but not as yet feasible. The futigh-
set. throughput Grid may be constituted of millions of indepemtge
« An RLI maintains information about the catalogs and thiterconnected computers, all contributing their unusgdes
associated logical filenames. It can find which cataldg the processing needs of a world-wide community. We
holds the replica file list for a given LFN (LFN to LRC believe that in order to scale the Grid to these numbersether
map). is a need to delegate the execution of some of its core service
In a default deployment scenario, each participant of a Vi@ the edges of its infrastructure. In a network of milliomsia
manages an LRC, while the overall orchestration of the RL/lions, a task distributed to tens or even hundreds stilsa
is done by a single central RLI per VO. When requiremeng$ & “centralized” resource.
escalate, multiple RLIs can be deployed in parallel, primgd ~ We propose that a truly scalable solution to the file replica
optional coarse-grain load-balancing and fail-over fesgtuo location problem could be based on the usage of a structured
the replica location infrastructure. The Giggle FrameworReer-to-peer overlay network. The next section of this pape
instructs that multiple indices and catalogs form a twalevincludes some comments on Giggle’s design limitations)evhi
hierarchy, with each LRC linked to multiple RLIs and vicdn the following sections, we concentrate on the obserdatio

versa. Multiple RLIs can also form tree-like structures. ~ that although peer-to-peer systems were designed for dis-
tributed and scalable lookups, they need a builujpdate
Replica Location Indices mechanism in order to fit in the requirements set by the Raplic
Location Service design. We analyze the problems assdciate
RLI with supporting such operations in distributed hash taltdesd
at previous designs that try to solve the problem by intéggat
/\ a data management layer on top of a read-only peer-to-peer
RLI RLI RLI overlay and propose an algorithm to enable inherent mutable
data storage and management in the peer-to-peer network
,,,,,,,,,, level. In addition, we present how our algorithm can be
V\ incorporated into a simple distributed hash table protocol
LRC LRC LRC LRC discuss on the method and evaluate its merits, elaborating o
performance results from an early implementation. Thisepap
Local Replica Catalogs is concluded with references to related work in the area and

thoughts on future work in the same direction.
Fig. 1. Giggle deployment example

. . . . Il. LIMITATIONS OF THE GIGGLE FRAMEWORK
While scalability had been a major concern during the

design of the Giggle architecture, we believe that the idistr Delving into the internals of the Giggle Framework, one
bution approach used may reach its limits, when the numbean argue that it cannot offer the scalability and perforcean
of logical to physical flename mappings or the number ofeeded for a global Grid infrastructure. A Replica Location
catalogs and indices increase in several orders of magnituBervice must implement partitioning in both the levels dfada



storage and data operations in order to be scalable. ThdeGigy forcing periodic vacuums in PostgreSQL). When database
framework may allow tuning of its index and catalog topologproducts used are third-party, these modifications mayeprov
via a variety of parameters, but even in a fully distributedven harder to implement.

environment, the architecture of the service will only allo To deploy and use the Replica Location Service, a large
data storage partitioning. Operations on data, such aggesamumber of parameters have to be tuned, such as the number
in the LFN to PFN mappings, will all be concentrated at thef RLIs, the function used to partition the LFN or the Replica
node responsible for storing a particular mapping. As altesiSite namespace, the degree of redundancy in the index space,
specific LRCs may get overloaded when very popular LFNRe compression method of the soft state updates and the type
require frequent updates of their associated PFN lists. of the scheduled updates of the catalogs. So, Giggle isuliffic

The Giggle prototype implementation [8] requires that data deploy and manage and it can not automatically adopt to
partitioning is configured manually. If the RLS has huge datanadvertised subsystem joins or failures. We also belikae t
sets to handle and storage requirements change, the pattie- pursuit of scalability has led Giggle to employ complex
ipating nodes must manually adapt to the new situation loyechanisms to update the data which will in turn limit the
specifying new distribution parameters. Moreover, relgmsl efficiency of data retrieval operations on very large neksor
of partitioning, the catalogs and indices cannot autoraly§ic There are currently no performance results of a very largé RL
handle a new addition or deletion of a participating catalog system serving millions or billions of mappings, so therads
index. In general, Giggle parameters cannot be dynamicafiyactical way to plead for this hypothesis, but we feel thaté
changed. Although the designers have envisioned a memlzzmn be an easier way to implement a Replica Location Service
ship management service that will allow the system to defalr the Grid, with the help of an already scalable, fauletaht
with unplanned LRC and RLI joins and failures, the currerdnd self-configurable peer-to-peer network.
static configuration adds a tremendous cost in the managemen
pf the replica location service. Every time a new entity idex . PEER-TO-PEER LOOKUP SYSTEMS AND THEGRID
in the network or a system parameter needs update the whole
service may have to be reconfigured. The idea of using a peer-to-peer lookup system for locating

Data partitioning has been incorporated in the Gigglde replicas in a Grid environment is not new. lan Foster,
framework, both as a method to achieve scalability and Aslriana lamnitchiet al. in [9], [10], recognize that the peer-

a technique to reduce network and system utilization whéorpeer and Grid research communities have much in common
LRCs update RLIs. LRCs are required to refresh RLIs, nand even more to learn one from another. Services that rely
only in order to inform them on the latest mapping updates, ban a peer-to-peer infrastructure can scale without appdica
also to prevent them from deleting old mappings because afd environment specific fine-tuning to millions of peer par-
timeouts. The update mechanism between the mesh of inditiegpants, all of which can use the system simultaneousdte T
and catalogs has to be as efficient as possible, as it can limgtwork is designed in a scalable way and its potential grows
the scalability of the system. The Giggle prototype leaves more participants join, in contrast to traditional diisarver
data partitioning disabled by default. Instead, it is acytleat models, where overall network performance degrades as more
scalability can be achieved by utilizing a soft state protoc and more clients try to access the centralized resources. Th
Either full or incremental, updates are asynchronous, senwhauthors of the Giggle system credit the work being done
an add or delete operation occurs, it is not immediately prom peer-to-peer location discovery systems as most refevan
agated to the appropriate index server. Moreover, softtegdato theirs. Actually, all peer-to-peer systems try at least t
can be very demanding on the size of the data involved. $olve the same basic problem as Giggle: Given a unique
reduce the overhead of such transactions, they are conegresgiobal identifier, locate in a distributed and scalable wag t
using Bloom filters - a lossy compression scheme. Eventualigsource in question [11]. On top of the location service
because of asynchronous updates and lossy compressiosashe of the systems will also provide additional services to
data, the requesting clients may get false positive ansarats the participating peers, such as file downloading or media
appropriate error-handling mechanisms must be developedstieaming. It is no coincidence that peer-to-peer systams a
the client-side. usually called “lookup systems”.

According to the experimental analysis of the prototype im- Peer-to-peer architectures can fall into two basic categor
plementation, compression of the updates induces perfarenadepending on the structure of the overlay network produced
overheads when the filter is initialized and every time a ne5mbwhen nodes join and leave the system. Structured systems, or
of hash functions need to be calculated for a filename. Inrorddistributed hash tables (DHTSs), such as Kademlia [12], Ghor
to reduce the performance loss, the relational databasehdc [13], Tapestry [14], CAN [15] and others, impose a specific
is not used when compression is enabled. Instead, thereviitual structure which accommodates peers in particltas s
a need for a customized in-memory data structure and the they join the network. On the other hand, unstructured
Giggle code has to support two different methods for the sammgstems like Gnutella leave the peers free to join in any qfart
function. The code becomes more complicated and the logitiaé network and the connection graph formed resembles that
and organizational advantages of a database backend are tifsa power-law network [16]. Each family of systems has its
On the other hand, although the database backend offers emsy advantages and disadvantages over the other: In stdctu
modeling and deployment of catalogs and indices, it requirsystems the lookup procedure is highly deterministic (will
non-trivial fine tuning (e.g. disabling database flush in IS almost always return a result if there is such a value in the



network) and any operation will almost certainly succeed inpredefined APIs.

predefined number of steps (usually equal to log(N), where N

is the number of participating nodes). In unstructuredesyst IV. DESIGN
lookups are performed by flooding the network with messages
While there is a high probability that a query will reach a nodl‘?ash table to store file replica locations, lies in the digsiwf

that can _reply for a specifip item, It is not definite_that hthe peer-to-peer network to handle mutable data. DHTs may
lookup will succeed. If the item is not popular and is Storegrovideget andsetoperations, but there is no straightforward
only at a node far away from the requesting peer, the look y to update data. When a key-value pair is stored into a

message will never reach it Als‘.)' fl_ooo_lmg in these SySterB it it i gestined to remain in the overlay unchanged until
requires far more messages than in distributed hash tabies, 95

‘The main problem associated with the usage of a distributed

tilizing th work in th ) h v advant it expires. This shortcoming, emerged as an effect of a DHT

utiizing edne ork in the ex remﬁ. . ehony S_llvan 3?e esign trade-off. The more these systems are made resilient
unstructure peer-to-peer s;_/s_tems 1es |n_t eir abilityandle to failures and random node joins and leaves, the more they
free-text search queries efficiently and in very few stess,

thev inherit a dominant ch teristic of | 50 fbse the ability to trace which node is responsible for sipri
ey inhert a dominant characteristic of power-iaw Neksor 5 specific data item. This is inevitable: In a static network

[17]. ) ) i there would be no need to duplicate and cache data. Key-
In the Grid environment one is not concerned about seargf}y e pairs would be placed in specific locations. In DHTS,

ing the file servers for a specific file. This operation is pred key-value pairs are copied to nodes that are “close” to the
by metadata servers [18] or can be hidden in applicati9B of the key and cached around the network. There is no
specific semantics. The problem is how to locate the phySi%Jgorithm that can return the exact location(s) of a keyeal
file names (replica identifiers) that may be available, whepir in a given moment (this is also a prerequisite for peer-t
knowing the logical file name of a resource (a unique per V%:er network security [19]).
file identifier_). There is f’i|SO a strong need _that this Iookgp DHTs are made for building dynamic overlays that store
procedure will complete in the minimum possible steps, @hil,o_requently changing data. While this may seem sufficient
maintaining the scalability and availability propertiesthe o storing the file contents of a read-only file distribution
lookup system layer. It is obvious that a centralized servREqwork, it is not enough to serve the needs of the Data Grid’s
storing (LFN, PFN) tuples would handle the lookup operatiog| 5. Theupdateoperation is absolutely necessary for storing
in a single step, but this solution would nelthe_r be scalab'lgpnca locations, as PFN mappings for a given LFN could
nor fault-tolerant. As more servers are added in the |°°k‘éﬂange frequently and there should be a way for propagating
layer and data and queries are distributed among them, mgyg nqdifications throughout the network as soon as possible
messages are needed to traverse the system hierarchy so {he could employ timeout metadata associated with each
reach the desired mappings. key-value pair for changing values in the overlay. Data in
Structured peer-to-peer systems are designed to servig4Ts expires after a predefined interval since its initial
storage and retrieval (lookup) of key-value pairs. Keys afgplication, and it is the responsibility of systems exatro
always unique for the whole system and serve as identifigfe peer-to-peer network to update or delete it. But explpit
for values. Most of the distributed hash table implemeat&i timeouts to support mutable data is not a solution. The use of
generate keys directly from the values by computing the SHAall timeout values and the shift of responsibility for eha
hash of the data provided for storage. This method produg@gnagement to an external system, would create scalability
uniform distributions of keys in a 160-bit identifier spaées  problems, destroy any caching advantages and induce severe
a result of the above, in order to utilize distributed hadilet® network utilization for frequent data updates. Moreoveg-t
for file replica lookups in a Grid environment, we have t@ering value changes on a timely basis, would not guarantee
make the following assumptions: immediate propagation of updates. Some lookups would seem

« One overlay peer-to-peer network will be deployed p&uccessful, but the results would include stale values.
VO (a single identifier space).
« A key will not be generated by hashing the value oA. Using logs to store and trace data modifications
an item. It should correspond to the hash of the IogicalA solution to the problem of storing mutable data in a

f|len§me (LFN) of th? resource. It W'”,be the UNIGU&istributed hash table is presented by the designers of Ivy
identifier complemgntmg all data operations. . [20]. Ivy is a distributed file system functioning on top of
< A VaIL.Je. for a key W'l.l actually_ be a data s_tructure - alis structured peer-to-peer network. All operations on filed a
con_tamnjg th-e. physical locations of replicas (PFNs) fOtheir contents are stored in a distributed hash table, gen
a given identifier. in a linked list of changes - a log. Each participant of the
Also note that in peer-to-peer terminology, the temet- file system knows the identifier of the last data item he put in
work and overlay refer to the network of virtual intercon- the system, while each data item contains a list of operstion
nections created between the physipakrsor nodesof the done on the file system and a pointer to the next key-value pair
system. The latter can practically be applications runming (previous set of changes). By traversing the log from thetmos
machines connected to the Grid. Other Grid services and engleent to the oldest item, the file system can “remember” the
user applications manipulate data stored in the context lafest state of each file and directory for a given participan
the peer-to-peer overlay, by interacting with nodes thiloughs a log exists for each participant of the file system, there



is no need to lock files and directories for concurrent usageer-to-peer system. We argue that this could be done with
between different participants. a very simple addition to the basic distributed hash table

To use this algorithm in the file replica location scenariglgorithm. DHTs may distribute the data in numerous peers
one could store a list of PFN changes for each LFN. Eadi the system, but the only important nodes for every key-
list item (key-value pair) would contain a PFN, a statugalue pair are the ones returned by the lookup procedures If w
(valid/invalid) and an identifier pointing to the next itemider change the value in these nodes there is a very high protyabili
change). There is also a need to store the mutable head poithiat upon subsequent queries for the same key, at least one
of the list in a well-known place. In lvy, each participantrsts  of the updated ones will be contacted. Of course this is not
his own head pointer locally and consults the distributeshhaenough, as the network is not a static entity and the nodes
table only when walking through the list of immutable changeesponsible for a specific key-value pair storage change ove
records. In analogy, every member of a VO participating itime. DHTs support dynamic node arrivals and departures, so
the management of the VO's file replicas could store a pointstorage relationships between data items and nodes may be
to his change list. Nevertheless, vy solves one problem kaitered over time in an unpredictable manner.
introduces another. The method used for managing changeés a consequence, evetgokup should always query all
is completely inefficient. The use of a distributed log lisnitnodes responsible for a specific key-value pair, compare the
scalability and performance. There may be a need to gesults based on some predefined version vector (indicating
through hundreds of key-value lookups in the distributeshhathe latest update of the value) and propagate the changes to
table in order to find the current mappings for a given LFNhe nodes it has found responsible for storage but not yet up-
which would incur an intolerable cost in terms of networko-date with the latest value. This requires that the aliyori
messages. Even more, Ivy’'s log records never get deletedf@s locating data items will not stop when the first value
they are needed for recovery in case of network failures ardreturned, but continue until all available versions oé th
the cost for managing the status of which entries should pair are present at the initiator. The querying node willnthe
deleted could be enormous. decide which version to keep and send correspondioge

An analogous design is followed by OceanStore [21inessages back to the peers that seem to hold older or invalid
OceanStore implements a file management layer on teplues. Updates could therefore be implemented through the
of an underlying Tapestry network. Each file created intoredefinedset operation, as version checking would also be
OceanStore is associated with a DHT-level key-value pairdone by nodes receivingtore commands. The latter should
the root block which contains information about the file andcheck their local storage repositories for an alreadyeqes
an index to its correspondingata blocks(also maintained in identifier, and if there is a conflict, keep the latest version
the DHT). To update the contents of a file, one must finef the two values in hand. A simple data versioning scheme
its root block, as the root block’s maintainer is resporesibcould be accomplished by using timestamp indicators along
for serializing write and append requests. Each time a fiéwery key-value pair.
changes, a newersionis added to the network. This new With the above design in mind, we have tweaked the
version is practically a new set of key-value pairs: a newademlia protocol to support mutable data storage. While
root block pointing to new data blocks - only those that hawbese changes could have been applied to any DHT (like Chord
been altered from the previous instance of the file. OceaaStor others), we picked Kademlia as it has a simpler routing
also supports file replication. There can be multiple instan table structure and uses a consistent algorithm throughout
of a file in an OceanStore network, but one of them has the lookup procedure. Kademlia relies on a XOR operation
be tagged as therimary replica Whenever an instance ofbetween identifiers to find which nodes are responsible for
a replicated file changes, the updates have to be propagating a specific key-value pair. As in any DHT, Kademlia's
from the primary replica to all other replicas as well. Thgeers and data items have identifiers from the same address
update model used is very similar to the one utilized by Ivgpace. XOR is used as théstance functionto indicate which
although updates are handled at the file - not the participate the closest nodes to a given key. By default, when a node
- level. Also, the overall design is mainly tailored to sugpo of a Kademlia network is instructed to lookup a value through
file system semantics. If OceanStore was to be used as a bt®snetwork, it will issuex parallel queries to the closest
for the construction of a scalable RLS, one could associat@eers it is aware of, and continue the process as long as no
“file” to each LFN. Its contents would then be the list of allivalue is returned or it keeps learning of peers even closer to
valid PFN mappings. Furthermore, one more index would ibee requested target key. The system-wide parametetso
required; the directory of the latest root block IDs for eachpecifies the number of copies maintained for each data item
series of “file” changes. In an hierarchical naming modeg thand controls the size of routing tables in peers. Betlhnd
index could be the parent “directory” containing the filet bux variables are set at each participating node and affect only
in flat naming schemes, using another catalog to find replitecal service performance.
locations would prove inefficient. According to the Kademlia protocol, three RPCs take
place in any data storage or retrieval operatiehND_NODE,
FI ND_VALUE and STORE. To store a key-value pair, a node
will first need to find the closest nodes to the key. Starting

The ideal solution would be to enable mutable data storagéh a list of closest nodes from its own routing table, it
at the level of each individual key-value pair stored at theill send parallel asynchronouSl ND_.NODE commands to

B. Enabling mutable data storage



the top o nodes of the list. Nodes receivingFd ND.NODE command should replace their local copy of the key-value pai
RPC should reply with a list of at most closest peers to the with its updated version. Storing a new key in the system is
given ID. The requesting node will collect the results, neergdone exactly in the same way, with the only difference that
them in the list, sort by distance from the key, and repeat thee latest version of the data item is provided by the user.
process of querying other nodes in the list, untilaltlosest Moreover, deleting a value equals to updating it to zerotleng
nodes have replied. Actually, the initiator does not waitdth Deleted data will eventually be removed from the system when
« concurrent requests to complete before continuing. A netvexpires.
command can be generated every time one ofdheflight
RPCs returns new closest nodes candidates. When the lis. i
finalized, the key-value pair is copied to the corresponding
peers viaSTORE RPCs. Kademlia instructs that all original In the original Kademlia protocol, Bbokup operation will
key-value pairs are republished in this way every hour, amermally require at most log(N) hops through a network
expire in 24 hours from their initial publication. of N peers. The process of searching for the key's closest

To retrieve a value from the system, a node will initiat@odes is complementary to the quest for its value. If an
a similar query loop, usindg| ND_VALUE RPCs instead of “early” FI ND_-VALUE RPC returns a result, there is no need
FI ND_NODEs. FI ND_VALUE requests return either a valueto continue with the indireckl ND_NODE loop. On the other
from the remote node’s local repository, or - if no such vatue hand, the changes we propose merge lthakup and store
present - a list of at most nodes close to the key. In the lateloperations into a common two-step procedure: Find the stose
case, this information helps the querying node dig deegter imodes of the given key and propagate the updated value.
the network, progressing closer towards a node responsiblached items are ignored and lookups will continue until
for storing the value at the next step. The procedure stojpsding all nodes responsible for storing the requested data
immediately when a value is returned, or when thelosest item. The disadvantage here is that it is always necessary to
peers have replied and no value is found. On a succesdfillow at least log(N) hops through the overlay to discover a
hit, the querying node will also cache the data item to thdentifier's closest peers.
closest peer in the lookup list that did not return the value, Nevertheless, the lookup procedure is also used to propagat
with a STORE RPC. Moreover, whenever a node receives @pdated values to the network. So the extra cost in messages
command from another network participant, it will check ités equal to the “price” needed by the infrastructure to suppo
local key-value pairs and propagate to the remote peer the omutable data. There certainly can not be a way to support
that are closer to its ID. This guarantees that there areesopsuch a major change in the peer-to-peer system without gayin
of values to all of their closest nodes and helps peers recesome cost, either in terms of bytes exchanged or in terms
their corresponding data items when they join the network.of increased latency required for a result (two benchmarkin

In the scaled-down example of a Kademlia network shownetrics proposed as a common denominator in evaluating var-
in Figure 2, both nodes and key-value pairs are mapped tdoas peer-to-peer systems [22]). Moreover, the aforerorat
common 4-bit identifier space. The XOR induced topology @drawback in lookup performance could even be accounted
easier to understand if the address space is represented as a feature: distributed hash table nodes generally eéxploi
binary tree. Nodes and key value pairs are treated as thedeanessages exchanged in favor of updating their routing $able
of the structure, while each node has more routing informmati The more messages, the more fault-tolerant the system gets.
for near subtrees and stores items closer to its correspgpndfIso, there is no longer a need to explicitly redistributeada
leaf. Forx = 2, a data item will be stored at least at its twdtems every hour, as values are automatically republisired o
closer nodesk3 is stored an2 andn3). Another node can every usage. However, the system will still reseed keyevalu
start locating it in the system by asking a close peer for thpairs to the network when an hour passes since they were last
item’s key. If the remote node can not return a result, it wifpart of a store or lookup operation (effectively propagating
instead answer with a list of nodes that are even closer to tigdates).
requested identifier. By repeating the process, the irigar Our algorithm can not guarantee that the latest view of
will finally reach a node responsible for storing a specifig-ke a data item will be its latest version, as much as DHTSs in
value (14 locatesk 3, stored ah3, by using the list of closest general cannot guarantee that the key-value pairs stored in
nodes returned bp1l). the network will be there when needed. There is always a

Our modified lookup algorithm works similar to thepercentage of success, bound to many parameters that impact
FI ND_NODE loop, originally used for storing values in thethe network’s reliability and performance. A peer-to-peer
network. We first find all closest nodes to the requested keyetwork continues to be a dynamic entity, prone to random
value pair, throughl ND_.NODE RPCs, and then send themode joins and leaves, unexpected network failures andsgive
FI ND_.VALUE messages. The querying node will check alisage patterns. It is obvious that although storage of tlestla
values returned, find the most recent version and notify tkersion is propagated to the closest network participaots f
nodes having stale copies of the change. Of course, ifttee querying node’s point-of-view and each node indivitual
peer replies to thd-l ND_-VALUE RPC with a list of nodes tries to inform the nodes it knows closer to a key-value pair
it is marked as not up to date. When the temmodes have when it receives RPCs, a major network breakdown may leave
returned a result (either a value or a list of nodes), wstale information in the system, if all nodes responsibleafo
send the appropriateTORE RPCs. Nodes receiving@TORE  updated version’s storage fail. It is with very high probigpi

S . .
Discussion
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Fig. 2. Scaled-down example of a Kademlia network

though, that at least one node informed on a specific data itéme system to complete each type of operation for different
update will be found in a subsequent retrieve operationtigr aamounts of key-value pairs and DHT peers. Kademlia’'s pa-
key-value pair. rameters were set ta=3 andx=4, as the network size was
The changes we propose for Kademlia can easily be adopliedted to a few hundred nodes.
by other DHTs as well. There is a small number of changesFigures 3, 4 and 5 show that the implementation takes less
required and most (if not all of them) should happen in th@an 2 milliseconds to complete a select operation and an
storage and retrieval functions of the protocol. There waserage of 2.5 milliseconds to complete an insert operation
no need to change the way Kademlia handles the node j@ina network of 512 nodes with up to 8K key-value pairs
procedure or routing table refreshes. Nevertheless, ti®erestored in the system. The overall system seems to remain
still a requirement that key-value pairs expire 24 hoursraftscalable, although there is an evident problem with disk
their last modification. Among other advantages I‘efl’eShimﬁxency if a specific node stores more than 8K key-value pairs
provides, it is the only way of completely clearing up thes individual files in the filesystem. This is the reason behin

ID space of deleted values. the performance degradation of the four node scenario as the
amount of mappings increases. Ashas been set to 4, all
V. IMPLEMENTATION data items are present at all 4 nodes. When the network has

We implemented the full Kademlia protocol plus our ad8K key-value pairs, each node has a copy of all 8K mappings.

ditions in a very lightweight C program. In the core of the

implementation lies a custom, asynchronous message handle ,, :

that forwards incoming UDP packets to a state machine, while o hode T

outgoing messages are sent directly to the network. Except (04 modes e

from the connectionless stream socket, used for communi- . | |

cating with other peers, the message handler also manages

local TCP connections that are used by client programsgw

The program runs as a standard UNIX-like daemon. Clienf, ol |

applications willing to retrieve data from the network oorst E

key-value pairs in the overlay, first connect to the daemor;tu

through a TCP socket and then issue the appropgateor ¢

setoperations. All items are stored in the local filesystem and

the total requirements on memory and processing capagty ar ©

minimal. A
For our tests we used a cluster of eight SMP nodes, each °

running multiple peer instances. Another application wloul

generate insert, update and select commands and propaggte  seject operations

them to nodes in the peer-to-peer network. In the following

paragraphs we will present some results from this earlyegyst

prototype. While our software is not yet complete, it can helg Nevertheless, s_ystems larger than 4 nodes behave Very wel,

us study the basic characteristics and behavior of the tpeer- Ince the mean time to complete queries does not experience

peer overlay and evaluate our algorithm and the potentelst fllrge orl]ewanonr;s as the nu_mbe_r data |tedms goubles n |5|ze.
to support the file replica location needs of Grid appliaagio ° SO‘_t € grapns repr_esentmg Inserts and up ates are 1z_amos
identical. The reason is that both operations are handlétkin

_ ) same way by the protocol. The only functional difference is
A. Performance in a static network that inserts are done in an empty overlay, while updates are
To get some insight on the scalability properties of thdone after the inserts, so the version checking code has data
underlying DHT, we first measured the mean time needed for evaluate.

T T T T
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20 , , , — network would neither grow nor shrink. Figure 6 shows the
8 nodes - average query completion time during a one minute rolling
Joonodes oo timeframe for four different node join and fail rates. In the
15 + {1  simulation environment there is practically no commuriarat
) latency between peers. Nevertheless, timeouts were set to 4
£ seconds.
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1) Handling timeouts: As expected, increasing the num-

g o101 1 ber of node failures, caused the total time needed for the
. completion of each query to scale up. High levels of churn,
g result in stale routing table entries, so nodes send message
> r 1 nonexistent peers and are forced to wait for timeouts before
R they can continue. Kademlia nodes try to circumvent stale
Q — peers inget operations, as they take parallel paths to reach

L : : the key in question. It is most likely that at least one of
these paths will reach a cached pair, while other paths may be
blocked, waiting for replies to timeout. Our protocol adlatits
require that caching is disabled, especially for networkene
key-value pairs are frequently updated.

data set size (K)

Fig. 5. Update operations

B. Performance in a dynamic network

9000
= \ \
Our second goal was to measure the performance of th§ 8000 | a in total 300000 _|
overlay under high levels of churn (random participant $oin £ 79 aoutofr /.

and failures), even in a scaled-down scenario. Using th&,
implementation prototype, we constructed a network of 256
peers, storing a total of 2048 key-value pairs, for each ef thi
following experiments. Node and data identifiers were 32 bitS
long and Kademlia’s concurrency and replication parameterg
were set toa=3 and k=4 respectively. A small value of €
k assures that whatever the distribution of node identifiers?
routing tables will always hold a subset of the total popalat 0
of nodes. Also it guarantees that values will not be over-
replicated in this relatively small network.

Each experiment involved node arrivals and departurq:‘?’g. 7. Adapting thex concurrent requests to changes in the (opntries
as long as item lookups and updates, during a one haiithe lookup list
timeframe. Correspondingstartup shutdown get and set
commands were generated randomly according to a Poissoinstead, we try to lower query completion times by making
distribution, and then issued in parallel to the nodes. \Adest nodes dynamically adapt their query paths as other pedss rep
by setting the item update and lookup rates to 1@@%}%, In the first phase of theet operation, wherd-I ND_NODE
while doubling the node arrival and departure rates. lihtia requests are issued, nodes are instructed to constantiyowvai
64 new nodes were generated per hour and’l,gffiré failed. a maximum ofa peers to reply from the closest If a reply
The arrival and departure rates were kept equal so that ttteanges the: closest node candidates, the requesting node
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may in turn send more than one commands, thus having m@e Results and future work

than a requests inflight, in contrast te in total as proposed e prototype implementation behaves very well in terms

by Kademlia. This optimization yields slightly better résu o cajability and fault-tolerance, which has allowed uglan

in total query completion times, in expense to a small inEeeay,re experiments with much larger network sizes and data

in the number of messages. Figure 7 shows a comparisonsgf nopulations. To alleviate the problem with disk storage

the two algorithms in a network handling 256 node arrivalg ftyre versions of the implementation, we intend on using

and departures per hour. _ database-like, single-file storage for local data on eacteno
2) Handling lookup failures:High levels of churn also lead or alternatively, an embedded, lightweight database engin

to increasing lookup failures. Experiment. results shown ifjeq SQLite. Nevertheless, scaling the experiments from a
Table | suggest that as the rate of node arrivals and departyg,,, hundred nodes to orders of magnitude upwards is not

doubles, the lookup failure rate grows almost exponegtitll gy aightforward, as it requires special consideratioganging

order to prove that the extra messaging cost by our protogal, jimits of the underlying simulation hardware and sofeva

additions can be exploited in favor of overall network fault[23]_ We also plan on adding support for Kademliatsceler-
tolerance, we reran the worst case scenario (512 node joipsy lookups

and 512 node failures per hour) several times, while dogblin

ationa ) Moreover, we are working in the direction of coupling our
the lookup rate from 1024 up to 163845777522 Itis evident iy hiementation with a flexible peer-to-peer network sintia

from the results presented in Table I, that even in a netwofka: will allow us to conduct much larger experiments and

with very unreliable peers, a high lookup rate can cause theyaqure specific benchmarks relevant to DHT designs [22].
corresponding failure rate to drop to values less than 1% TRye are focusing on evaluating various aspects of the system,
owes to the fact that lookup operations are responsible {gfiie yarying node network and computational performance

propagating key-value pairs to a continuously changing S§{aracteristics. As our prototype approaches productiate.s

of closest nodes, while helping peers find and remove sl are also considering actual Grid and PlanetLab [24] test
entries from their routing tables. deployments.

TABLE | DHTs normally store successfully retrieved data at the aode
LOOKUP FAILURES WHILE INCREASING NODE ARRIVAL AND DEPARTURE performing the query and take advantage of cached items at
RATES subsequent fetch operations. However, our modified Kademli
protocol will not stop thelookup operation on a cache hit,
nodes 64 128 | 256 512 so we have disabled all caching in our implementation. A
Failures 0 2 32 154 guestion left open is how to incorporate a caching scheme
Rate 0.00% | 0.19% | 3.12% | 15.03% along our algorithm for distributed mutable data managemen

If we enable caches there has to be a way of using them
The initial high failure rate is also dependent on the wayithout sacrificing the integrity of key-value pairs thrdwgit

Kademlia manages routing tables. When a node learns othg network. We are currently investigating various cache
new peer, it may send corresponding values for storage, bunagement schemes that could fit in as a solution to this
it is not necessary that it will update its routing table. Fgproblem. There is a need to invalidate caches throughout the
small values ofx and networks of this size, routing tablegietwork on every data item update. On the other hand, we
may already be full of other active nodes. As a result, loskugould just enable caches with small timeouts, especialty fo
may fail to find the new closest peers to a key. A dominafgplica location environments wheteokupsare much more
percentage of lookup failures in our experiments were @hugéequent tharstoresand strict data consistency is not a must.
by nodes not being able to identify the latest closest pekrs oAnother open problem we are looking forward to address
a value. Also, Kademlia’s routing tables are designed torfavin future work is security. The Grid software infrastrueur
nodes that stay longer in the network, but the random deggart@rovides advanced security services which we would like to
scheme currently used by our simulation environment does miacorporate in our application.
exploit this feature.

VI. RELATED WORK

TABLE Il
LOOKUP FAILURES WHILE INCREASING THELOOKUP RATE Peer-to-peer overlay networks and corresponding pratocol
, have already been incorporated in other RLS designs. In a
cpepadions || 1024 | 2048 | 4096 | 8192 | 16384 recent paper [25], Min Caét al, have replaced the global
Failures 162 106 | 172 126 84 indices of Giggle with a Chord network, producing a variant
131 o1 137 80 58 of Giggle called P-RLS. A Chord topology can tolerate
163 63 145 | 116 | 106 random node joins and leaves, but does not provide data fault
143 61 130 | 120 | s tolerance by default. The authors choose to replicate dhata i
Rate 15.82% | 5.17% | 4.19% | 1.53% | 0.51% the successor sebf eachroot node (the node responsible
12.79% | 4.44% | 3.34% | 0.97% | 0.35% for storage of a particular mapping), effectively reprodgc
15.91% | 3.07% | 3.54% | 1.41% | 0.64% Kademlia’s behavior of replicating data according to the
13.96% | 2.97% | 3.17% | 1.46% | 0.53% replication parametet. In order to update a specific key-value

pair, the new value is inserted as usual, by findingtin¢ node
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and replacing the corresponding value stored there and atdaployments will continue to benefit from Giggle’s architec
nodes in itssuccessor seWhile there is a great resemblancéure. However, we doubt that Giggle will be able to scale,
to this design and the one we propose, there is no support ifororder to cover the needs of an extremely large Grid. As
updating key-value pairs directly in the peer-to-peer gmot the mesh of catalogs and indices grows, the overall service
layer. It is an open question how the P-RLS design would copéll experience serious bottlenecks in update operatiaisn,
with highly transient nodes. Frequent joins and departimesit requires tuning of various non-trivial parameters anésus
the Chord layer would require nodes continuously exchangisomplex data structures and algorithms to distribute thkup
key-value pairs in order to keep the network balanced and ttigta. Our peer-to-peer RLS can run at multiple machines per
replicas of a particular mapping in the correct succes$dus. site or even every machine of the Grid having a public IP
design deals with this problem, as the routing tables ingide address, as the operational requirements are minimal. Fur-
nodes are immune to participants that stay in the network fibrermore, the architecture of the network will ensure tteat a
a very short amount of time. Moreover, our protocol addgiormore and more nodes join, the replica location infrastmectu
to support mutable data storage are not dependent on nodi scale in storage capacity without significant losses in
behavior; the integrity of updated data is established dyly lookup performance. DHT systems are proved to be extremely
relevant data operations. scalable and can provide good fault-tolerance charatiteris

In another variant of an RLS implementation using with very simple deployment and management requirements.
peer-to-peer network [26], all replica location infornwatiis
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